
Project Summary

By allowing people to try out dozens of high-quality optimization packages
and interfaces free of the difficulties of downloading and installation, the NEOS
Server [12] has provided a software cyberinfrastructure [46, 47] that greatly enhances
the applicability of large-scale optimization methods. As designers and developers
of the NEOS Server at Northwestern University and Argonne National Laboratory,
the investigators are uniquely positioned to undertake new research projects that
envision ambitious further extensions of the concept of optimization as an Internet
resource.

Intellectual merit. The proposed research will address two new project areas,
each motivated by the challenges of integrating a general computing concept with
the particular difficulties of optimization:

. Bringing on-demand high-performance computing to researchers and
practitioners in large-scale optimization, by integrating advanced com-
puting platforms with the NEOS framework.

. Standardizing representations and protocols for distributed optimiza-
tion, by bringing emerging “web services” concepts to bear on services
for large-scale optimization.

The proposed research will begin by focusing on a particular project in each of these
areas:

� A NEOS solver that exploits specialized multi-processor computing ar-
chitectures for purposes of nonlinear optimization over discrete as well
as continuous decision variables.

� An XML-based standard form and application programming interface
for a broad range of optimization problem types.

Other challenging projects in each area will be initiated as the research program
proceeds. This research will take advantage of developments in discrete nonlinear
programming, web services, and high-performance computing that have made sub-
stantially more ambitious projects possible in the past few years.

Broader impacts. This project will provide diverse practitioners and research-
ers with unprecedented access to computing resources for optimization. The pro-
posed standards research will also greatly enhance the interoperability as well as the
accessibility of optimization software.

The proposed work will also further the NEOS project’s mission of making opti-
mization a part of the worldwide software cyberinfrastructure that supports science,
engineering, and commerce. The broad impact of this mission is a direct result of
the great variety of application areas in which the NEOS solvers have been applied,
including supply-chain management, duty scheduling, combinatorial auctions, agri-
cultural economics, chemistry, roll cutting, petroleum engineering, physics, electri-
cal engineering, neuroscience, circuit design, network design, protein structure pre-
diction, power engineering, process modeling, engineering mechanics and robotics.
Indeed, as with other infrastructures, the NEOS Server has proved to have many
valuable uses that could not have been predicted in advance.

Project Description

Extending a Cyberinfrastructure to Bring
High-Performance Computing and Advanced Web Services

to the Optimization Community

The transformation of products into services has been a major trend in computing
and networking over the past decade. In the field of large-scale optimization, this
trend has been exemplified by the great success of the NEOS Server [12] as a
managed service provider [10] for applications in operations research and diverse
areas of science and engineering. By allowing people to try out dozens of high-
quality optimization packages and interfaces without having to download and install
complex software, the NEOS Server has provided a software cyberinfrastructure [46,
47] that greatly enhances the applicability and usefulness of optimization methods.

As designers and developers of the NEOS Server at Northwestern University and
Argonne National Laboratory, we are uniquely positioned to undertake new research
projects that envision ambitious further extensions of the concept of optimization
as a service. We propose in particular to investigate two new project areas, each
motivated by the challenges of integrating a general concept from computer science
with the particular difficulties of optimization:

. Bringing on-demand high-performance computing to researchers in large-
scale optimization, by integrating advanced computing platforms with
the NEOS framework.

. Standardizing representations and protocols for distributed optimiza-
tion, by bringing new “web services” concepts to bear on services for
large-scale optimization.

For each of these project areas, our proposed research first focuses on a timely
project whose potential is likely to be fully realized during the grant period:

� A multi-processor NEOS solver for nonlinear optimization over discrete
as well as continuous decision variables.

� An XML-based standard form and application programming interface
for a broad range of optimization problem types.

We also cite other challenging projects in each area that we plan to initiate during
the grant period, as our research program proceeds.

Our projects will have the benefits of high-performance computational equip-
ment and expertise at Argonne National Laboratory, as well as an active doctoral
program at Northwestern University. We will also be able to take advantage of
recent developments in discrete nonlinear programming, web services, and high-
performance computing so as to undertake projects that are substantially more am-
bitious than what could have been realistically proposed even three years ago.

Section 1 of this proposal places our work within the context of cyberinfrastruc-
ture and the optimization community, both in general terms and in the specific case
of the NEOS Server. Sections 2 and 3 then present detailed descriptions of the pro-
posed research in the two project areas that we cited above. Section 4 describes the
broad impact that we expect this work to have, and section 5 summarizes results
from previous NSF support that serve as the foundation for the proposed research.

C–1

1. Background and goals

We begin by describing the place of Operations Research within NSF’s broad
cyberinfrastructure (CI) initiative; this presentation is adapted from the report [46]
of an NSF workshop that we helped organize. We then tie our work to the CI
initiative by presenting the NEOS Server as a testbed for research into software
cyberinfrastructures for optimization.

Cyberinfrastructure and operations research. We are all familiar with
infrastructures: road systems, rail networks, power grids. An infrastructure does
not produce goods or services itself; rather, it makes a wide range of productive
activities possible. The interstate highway infrastructure does not itself carry out
supply-chain management, for example, but it permits the development of supply-
chain management systems that would not be possible otherwise. Indeed, it paves
the way for phenomena that were not foreseen when it was built, such as crossdocks
and suburban sprawl. The effectiveness of infrastructures depends critically on
standards (track gauges and standard time for railroads, bridge heights for highways,
voltages for power grids) and on accessibility to a broad base of users.

Among the major infrastructures of modern life, cyberinfrastructures constructed
from computers, data networks, software, and communications standards are among
the newest and most elaborate instances. The Internet and the Web are the best
known examples. Like other infrastructures, they facilitate myriad applications —
the web’s use for unexpected purposes is already legendary — and they depend crit-
ically on software standards such as HTTP and HTML.

Operations Research also has the characteristics of an infrastructure, in the
sense that it is a collection of theory, algorithms, and software that underpins and
facilitates productive activity. OR has had major impacts in design, manufacturing,
and services, without itself being any one of these things. Like infrastructures
generally, OR serves many purposes that were not envisioned by its creators.

The potential benefits are great, but weaknesses in the key criteria of standards
and accessibility currently prevent OR from truly filling the role of an infrastruc-
ture. Although hundreds of excellent OR software tools have been produced by
academia and industry, they communicate with each other and with their applica-
tions in ad hoc ways and through awkward interfaces. Individual OR researchers
and practitioners have ready access to only a small fraction of available tools, and
are able to implement and validate far fewer ideas than they can generate. The OR
community is consequently not well positioned to exploit new computing resources,
in particular the high performance, multi-processor computing resources commonly
associated with CI.

Many of the dangers of foregoing or under-funding CI initiatives cited in the NSF
panel report of Atkins et al. [47] apply directly to the OR community. OR problems
are pervasive and yet there is a low degree of sharing. CI tools can promote the de-
velopment of core OR, as well as OR cyberinfrastructures, by enabling research col-
laborations across institutions, locations, time, and fields of endeavor. CI expertise
is also needed to ensure that data and software acquired at great expense and ef-
fort are available for future researchers. Incompatible software tools and structures
that isolate the OR community (and isolate researchers from each other within the
community) need to be replaced, and OR researchers must take the lead in foster-
ing interoperability. There must be investment in the maintenance of successful OR

C–2

products so that time and talent is spent in breaking new ground rather than in re-
producing past efforts.

Cyberinfrastructure and optimization. Over the past decade, we and our
collaborators have designed and built the NEOS Server, the preeminent software
cyberinfrastructure for the support of large-scale optimization. This work has rev-
olutionized the activities of a broad optimization community having its roots in op-
erations research, the management sciences, computer science, and numerous engi-
neering and scientific disciplines.

The NEOS Server has revolutionized optimization research, teaching, and prac-
tice, by providing immediate access to far more solvers than optimization users
could hope to install locally. Even many commercial solver developers have made
their products available through the Server, to encourage potential customers to try
them out. We have a lengthy collection of testimonials to the Server’s value (see
section 5), and it was recognized in 2003 with the Mathematical Programming So-
ciety’s triennial Beale-Orchard-Hays Prize for Excellence in Computational Mathe-
matical Programming.

For the optimization community, the NEOS Server provides the characteristics
generally associated with a cyberinfrastructure:

� facilitating applications though not directly carrying them out;

� enabling more applications than were originally imagined;

� providing open access to Internet-based resources;

� encouraging standards for information interchange.

We see the NEOS Server as becoming not simply a stand-alone tool for the optimi-
zation community, moreover, but a resource that is interoperable with other analytic
activities in business, science, and engineering. Towards this end, we have recently
rewritten the Server to use now-standard conventions for data transfer (XML) and
remote procedure calls (XML-RPC). At the same time we are pursuing a more am-
bitious project to define standards for representing optimization problem instances
[24] and to provide a general framework for optimization services, as a foundation
for what can be viewed as the “next generation NEOS” [44].

The NEOS Server was designed from the outset to be scaled up; it has one
central server, but farms out solver requests to workstations that can be anywhere
on the Internet. Loads as high as 10,000 requests in a week have been handled
without evident strain on the system. Nevertheless, the Server’s design relies on one
central computer to handle communications and scheduling. Until now, moreover,
its distributed facilities have been no more than single-processor workstations. Thus
the NEOS Server has yet to play a part in bringing the optimization community
into the world of high-performance computing and web services, and its ability to
help with the very hardest and largest optimization problems has remained limited.
The goal of our proposed research is to address these limitations.

C–3

2. Proposed research on
Access to advanced computing resources for optimization

“Advanced” computing can mean any of several ways to use multiple processors
and networks to accomplish what cannot be done effectively by individual comput-
ers, including:

� high-performance computing, using large numbers of specialized pro-
cessors and specialized interconnections;

� distributed computing, using conventional computers working together
through Internet connections;

� high-throughput computing, using the computational resources of net-
worked computers that would otherwise go idle.

A great variety of optimization problems have features that permit advanced com-
puting to be used to advantage. For example, the metaNEOS project of 1997–2001
applied advanced computing approaches in solving all of the following:

. the 1010-variable deterministic equivalent of a 107-scenario stochastic
program on a computational grid of about 800 workstations, in about
32 hours of wall-clock time [39];

. a previously intractable quadratic assignment problem using an average
of 650 worker machines over a one-week period, providing the equivalent
of almost 7 years of computation on a single workstation [4];

. a mixed-integer nonlinear programming problem with parallel efficiency
of up to 80% on 600 million search-tree nodes [28].

How many applications have benefited from the pioneering work described above?
Essentially, none. Indeed, only a tiny fraction of people trained in optimization have
experience with any kind of advanced computing. For most members of the optimi-
zation community, whose focus is modeling and solving rather than computing, it
is a daunting (and disheartening) challenge to assemble and configure the hardware
and software resources necessary to apply or even experiment with such advanced
computational approaches.

To bring advanced computing of this kind to the optimization community in
a realistic way, we must provide a cyberinfrastructure that packages the advanced
computing resources behind an interface appropriate to optimization modelers. The
NEOS Server is the obvious candidate to provide the desired cyberinfrastructure.
Nevertheless, the Server will only be able to succeed in this goal after it has met a
number of significant research and implementation challenges, both to enable users
to efficiently interact with solvers, and to enable advanced computing systems to
effectively run such solvers on demand.

As an initial project to prove the effectiveness of making advanced computing
resources available through NEOS, we will address the problem of nonlinear opti-
mization over a combination of integer and continuous decision variables. We have
the advantage of experience in this area gained from the metaNEOS project [28]
listed above. The proposed project will develop substantially new algorithmic ideas,
however, and will employ new advanced computing platforms. Lessons from this
project will later be put to use in making advanced computing resources available

C–4

through NEOS for other difficult problems such as stochastic programming, rout-
ing, and quadratic assignment.

Online parallel integer nonlinear optimization. Many operations, engi-
neering, and scientific design applications involve discrete parameters that affect the
optimality of the final design. Problems of this type are modeled as mixed integer
nonlinear programming problems (MINLPs), which are conveniently expressed in
terms of smooth functions f and c as

(MINLP) Minimize
x,y

f(x, y),

Subject to c(x, y) ≥ 0, y integer.

MINLPs combine the difficulties of optimizing over integer-valued variables with the
challenges of handling nonlinear functions. Applications include blackout prevention
for electric power systems [16], the design of batch plants [31, 34], the synthesis of
processes [17], the design of distillation sequences [52], the optimal positioning of
products in a multi-attribute space [17], the minimization of waste in paper cutting
[53], and the optimization of core reload patterns for nuclear reactors [49]. The
surveys [29, 30] and the monograph [22] list numerous other applications.

We restrict our attention to MINLPs with convex functions f and c, which are
common in many engineering and scientific applications. Convex functions have the
advantage of producing guaranteed lower bounds when the integrality of variables
is relaxed. In the subsequent discussion of further technical work we indicate the
novel approach that we will take in extending ideas from the convex case to the
more general nonconvex case.

Two factors make MINLPs an ideal candidate for a demonstration project to
illustrate the benefits of a cyberinfrastructure that can bring advanced computing
to the optimization community. First, the solver “MINLP” [37] is one of the most
popular solvers currently available through the NEOS Server. Since 1999 we have
solved over 100,000 MINLP problems, ensuring that our work will have a large
impact. Second, the tree-search nature of the MINLP solver’s algorithm has a
particularly strong potential for exploiting parallel algorithms.

Prior work using advanced computing. The “MINLP” solver uses a branch-
and-bound approach that is most conveniently viewed in terms of a tree search.
Initially, all integer restrictions are dropped and the resulting continuous nonlinear
relaxation is solved. The algorithm then selects one integer variable that takes a
fractional value in the relaxation, say yi = ŷi, and branches on it by generating two
new problems with additional bounds yi ≤ bŷic and yi ≥ dŷie respectively. The
relaxations of these new, more constrained problems are then solved. The repetition
of this process generates the branch-and-bound tree, with a relaxed subproblem at
each node. A node of the tree can be fathomed — removed from further investigation
— if all variables of its associated relaxation come out integer, or if it is infeasible
or has a lower bound that is worse than the current best integer solution.

The tree structure of branch-and-bound gives rise to a natural parallelism with
little communication. There have been several implementations of parallel branch-
and-bound algorithms. Pekny and Miller [48] implement parallel branch-and-bound
to solve asymmetric traveling salesman problems on a BNN butterfly multiprocessor.
Eckstein [18] implements a parallel branch-and-bound solver for mixed-integer linear

C–5

programming (MILP) on a CM-5. Chen and Ferris [8], see also [9], implement a
parallel MILP solver on a computational grid. Anstreicher et al. [4] solve some large
quadratic assignment problems on a computational grid. Laursen [36] shows that
parallel branch-and-bound without communication between workers can be efficient,
provided a good initial solution is known. Androulakis and Floudas [3] implement a
parallel branch-and-bound algorithm for nonlinear global optimization. Sandia has
developed PICO [19], a massively parallel optimization framework for integer linear
optimization.

In the metaNEOS project [28] cited earlier in this section, we develop a parallel
branch-and-bound solver for heterogeneous distributed workstations on a computa-
tional grid managed by Condor [41]. The parallelization strategy employs a master-
worker paradigm in which the master manages a pool of MINLP tasks correspond-
ing to subtrees of the branch-and-bound tree, illustrated in Figure 1 (left). Each
worker solves a MINLP task by nonlinear branch-and-bound. The right image in
Figure 1 shows (clockwise from top left) the number of workers, the lower and upper
bounds, the number of problems on the stack, and the number of NLPs per task.

Proposed research. We propose to develop a new parallel branch-and-bound
solver for MINLPs, based on our metaNEOS work [28], but capable of running
efficiently on Argonne National Laboratory’s high-performance computing (HPC)
platforms: a Linux cluster with 350 Pentium 4 nodes, and a BlueGene machine with
1024 dual processor PowerPC 440 nodes.

HPC platforms pose new challenges for a parallel MINLP solver, because of the
rigid way in which resources are allocated. The amount of resources (in terms of
processors and time) must be specified ahead of the run. This is usually hard to do
for challenging optimization problems such as MINLPs, as the amount of work can
vary dramatically even among problems of the same size. At best, the remaining
amount of work required to solve a MINLP can be estimated after the solution
process has been running for a while.

We therefore propose to bracket the parallel solver by serial pre-solve and post-
processing stages. The pre-solve stage will prepare the MINLP for the parallel
solve and will estimate the resources required. The post-processing stage will check
the solution and if necessary will pre-process for an additional parallel solve. This
general framework is illustrated in Figure 2.

Figure 1: Parallel branch-and-bound strategy (left)
and result of Condor run on trimlon7 problem (right).

C–6

Figure 2: New parallel branch-and-bound strategy.

The pre-solve phase will start solving the MINLP sequentially using enhance-
ments known to work well for branch-and-bound [38]. An initial tree will be gener-
ated using a branch-and-cut approach and strong branching, providing strong cut-
ting planes, good estimates for pseudo-costs, and priorities for the integer variables.
We envisage that by observing the development of the bounds after solving a few
hundred node subproblems in this way, we will be able to estimate the resources re-
quired to solve the MINLP to a specified optimality gap. Hence this approach will
allow problem-specific scheduling of the MINLP tasks. An additional advantage is
that easy MINLPs can be solved in this stage without wasting parallel resources.

The tree that is generated during the sequential pre-solve stage will provide the
initial task pool for our MINLP solver for HPC environments. The parallel-search
stage will run for a pre-specified amount of time on a given number of processors.
We will experiment with the possibility of running a few probing nodes that exploit
heuristic MINLP techniques in an attempt to find good integer solutions quickly.
Once an initial integer solution has been identified, these probing nodes will be-
come regular branch-and-cut nodes. This design is similar to that of our grid-based
MINLP solver [28], except that new resources cannot easily be added. Thus, we re-
quire a post-processing stage.

The post-processing stage has two phases. In the first (parallel) phase, we clean
up the tree by removing as many open nodes as possible in order to return a tree
of manageable size to the sequential phase. The sequential post-processing phase
either passes the solution to the user, or parses the tree to improve the branching
heuristic employed in the parallel search. It generates a new resource request, based
on updated estimates on the amount of resources required to solve the MINLP.

Initially, we will deploy a simplified post-processing stage that only collects the
results from the parallel stage, and returns the best solution found together with
lower and upper bounds to the user. This will allow us to quickly gain experience
with real applications submitted to NEOS, which will guide more sophisticated
strategies later. Another advantage of this layered approach is that it provides
feedback on the progress of the solution without requiring write statements from
the individual processors.

Further technical work. We will explore extensions to the basic MINLP
solver in two areas. First, we will develop an approximate strong branching strategy
based on a mixed integer quadratic approximation [21]. This permits a strong
branching decision at a fraction of the cost of standard NLP strong branching. In

C–7

addition, we will develop new branch-and-cut ideas for MINLP. We have identified
the following classes of cuts that are likely to be useful in MINLP: knapsack covers,
knapsack covers with a single continuous variable, mixed integer rounding, and
disjunctive MINLP cuts. We will generalize these cuts to MINLPs by applying them
to linearizations of the nonlinear functions similar to [2]. The linearizations about
(xk, yk) with optimal multipliers zk ,

η ≥ fk + ∇fT
k

(
x − xk

y − yk

)
and 0 ≥ ck + ∇cT

k

(
x − xk

y − yk

)
,

are valid inequalities (where fk = f(xk, yk), etc.).
We have observed that the structure of MINLPs is often such that the nonlinear

constraints involve only the continuous variables x, making it impossible to apply the
first three cut classes directly. However, we can remedy this situation by summing
the linearizations weighted with (1, zk), which gives the valid cut

η ≥ fk + zT
k ck +

(
∇fk + ∇cT

k zk

)T
(

x − xk

y − yk

)
.

Now observe that zT
k ck = 0 and ∇xfk + ∇xcT

k zk = 0 by the optimality of (xk, yk),
giving the valid inequality

η ≥ fk +
(
∇yfk + ∇yc

T
k zk

)T
(y − yk) ,

which can be shown to be equivalent to the corresponding Benders cut. This cut
has the correct format to derive a knapsack cover with a single continuous variable.

Second, we propose a new approximation approach to multidimensional func-
tions that exploits recent advances in automatic differentiation and generates tighter
relaxations from convex approximations. Most functions can be expressed as a se-
ries of unary (e.g., sin(x1)) and binary (e.g., x2/x3) operations. The following ex-
ample is motivated by the modeling of electrical transmission networks. Consider
the constraint

4x1 − x2
2 − 0.2 · x2x4 sin(x3) ≤ 1 (2.1)

with suitable bounds on xi. One possible realization of this constraint as a compu-
tational graph is given in Figure 3, and the corresponding nonlinear system of unary
and binary equations is given in (2.2), where we have folded the linear expression
c = 4x1 − w4 − 0.2w3 into a single node.

4x1 − w4 − 0.2w3 ≤ 1 (2.2a)

w4 = x2
2 (2.2b)

w3 = x2w2 (2.2c)
w2 = x4w1 (2.2d)
w1 = sin(x3) (2.2e)

Figure 3: Computational graph of (2.1) and (2.2).

C–8

The first constraint is now convex, and the last four constraints are approximated
by SOS-2 and SOS-3 variables [51, 45]. We note that the convexification of individual
expressions significantly reduces the number of SOS variables that are needed. The
SOS-5 approximation used in [45] would require N4 SOS variables to discretize the
constraint of four variables, whereas our approach requires only 2 × N2 + 2 × N

variables, where N is the number of discretization points in each dimension.
We will develop an SOS-reformulation tool based on the new standard for rep-

resenting optimization problems that is described in the next section. Thus, our re-
formulation tool will be independent of the modeling language or the input format,
making it more widely applicable. In addition, we will mention the new convexity
and problem analysis tools described in the next section to derive tighter bounds
and exploit convex nodes of the expression tree, leading to a tighter approximation.

3. Proposed research on Optimization Services

When the first version of NEOS was created about a decade ago, the World
Wide Web was just coming into general use, and Web-based services were built
using whatever tools were handy. Successive versions of NEOS have been able to
take advantage of more standard tools that have become available. Thus the current
NEOS 5 uses XML tags for input files and XML-RPC for remote procedure calls.

In a project with Kipp Martin of the University of Chicago, we have been working
out the details of a new generation of NEOS-like systems, based on specialization
of current “web services” standards to produce a new concept of Optimization
Services. We envision an OS framework of languages and protocols that supports
a next generation of distributed optimization systems. Much of this framework is
described in the dissertation [44] of Jun Ma, who continues to be an essential member
of this project as a postdoctoral associate.

We begin this section by describing more fully our vision for the Optimization
Services framework. Since a detailed description of all the OS components intro-
duced in [44] would be far too long for this proposal, we focus on one aspect of OS
that is likely to be the first to have a widespread effect in the optimization commu-
nity: the design of new standard forms for representing optimization problem in-
stances.

The Optimization Services framework. This project represents the first
systematic approach to addressing and solving general issues in optimization system
and software development, and to standardizing all major instance representations
and communications in distributed optimization systems. It defines a framework
in the sense of specifying how a set of cooperative classes and interfaces should be
designed and implemented in order to solve optimization problems. To this end,

� it consists of multiple classes or components, each of which may provide
an abstraction of some particular optimization concept;

� it defines how these abstractions work together to solve an optimization
problem;

� its optimization-related components are reusable, providing a generic
behavior that many different types of applications can make use of;

� it organizes patterns of frequently repeated activities at a higher level.

C–9

Its design employs an architecture that is XML-based, service-oriented, optimiza-
tion centered, distributed and decentralized. The associated OS Protocol is an
application-level networking protocol that includes over 20 specifications of special-
ized communication languages or vocabularies. Optimization within a local envi-
ronment is covered as a special case.

Through standardization of modeling representation, communication, discovery,
and registration, the OS framework provides an open infrastructure for all optimi-
zation system components including modeling language environments, servers, reg-
istries, communication agents, interfaces, analyzers, solvers, and simulation engines.
The goal is that all algorithmic codes will be implemented as services under this
framework and that customers will use these computational services much like util-
ities, with special knowledge of optimization algorithms, problem types, and solver
options required no more than necessary. A supply chain modeler, for example,
will concentrate on writing a good supply chain model, while the steps of detect-
ing the problem structure, finding appropriate solvers, applying solvers to problem
instances, providing sufficient computing resources, and retrieving the solution will
be handled automatically. The combination of distributed system embedded intelli-
gence, smooth coordination of tasks, and seamless integration is what makes Opti-
mization Services unique and significant.

The OS framework retains the goals of NEOS while addressing many outstanding
design and implementation challenges faced by the current NEOS Server in a large-
scale, distributed optimization environment. The benefits of the framework’s com-
mon format for instance representation and standard application programming in-
terface (API) for solvers are considered in the next subsection. Its distributed design
also contrasts with the tightly coupled centralized structure of NEOS, wherein all
solvers are connected to the server and all optimization requests must go through it.

Optimization Services adopts a decentralized service-oriented architecture that
scales much more readily than a centralized design. There is still in some sense
a “central” server in the middle, but it functions as a lightweight registry that
maintains information about available optimization software. No solvers are actually
executed by this registry; instead users directly contact the solvers in a peer-to-peer
mode. The advantages of such a decentralized architecture are highly significant.
Indeed the Internet has become popular precisely because it has a decentralized
architecture; there is no such thing as a “central repository server” that hosts all
the Web pages. Development and maintenance happen spontaneously. It is our
vision that this kind of decentralized architecture can better promote research and
development in Operations Research.

Design of a standard for optimization problem instances. In a dis-
tributed environment of the kind we contemplate for the OS framework, the mod-
eling language software, solver software, and data used to generate an optimiza-
tion problem instance may reside on different machines using different operating
systems. Thus it is essential to have an open standard for exchanging problem in-
stances.1 Current optimization software is limited by its reliance on a plethora of

1By instance we mean a particular problem for which answers can be sought in the form of
specific values for decision variables, in contrast to a model that is a description of a class of
optimization problems. Typically a model is a symbolic, general, concise, and understandable
representation of an optimization problem, whereas an instance is an explicit, specific, verbose,
and convenient description of a problem’s objective and constraints [23]. Thus a model plus data

C–10

input formats, as can be seen by even a cursory look at the list of solvers available
on the NEOS Server. The nearly 50 solvers in the NEOS lineup require instance
inputs of about a dozen different kinds, including MPS [33] and various “LP” for-
mats for linear and integer programming, SMPS extensions to the MPS format for
stochastic programming, formats such as SDPA specific to semidefinite program-
ming, DIMACS min-cost flow and other formats for network linear programming,
and proprietary formats used by two modeling language processors. Other solvers
recognize input programmed as functions in various languages including Fortran, C,
C++, and Matlab.

A number of broader new standards have been proposed (if not widely adopted)
in recent years. Various extensions of the MPS format to nonlinear programming
have been put forward, notably the xMPS format by Halldórsson, Thorsteinsson
and Kristjánsson [32]. However, most recent proposals have been based on XML
(Extensible Markup Language [50]), which has become the established standard for
communicating data between web services. Fourer, Lopes and Martin [24] propose
the XML-based language LPFML for representing instances of mixed-integer linear
programs; Chang [7] and Kristjánsson [35] have also proposed XML representations
for linear programming instances. Ezechukwu and Maros [20] describe an Algebraic
Markup Language that uses XML to describe the model rather than the instance,
and Bradley [6] introduces an XML markup grammar for networks. See also [5] for
a good overview of the uses of XML technologies in operations research.

Proposals of new APIs to standardize interactions with solvers have also been
a subject of recent activity. The extensive COIN-OR (COmputational INfrastruc-
ture for Operations Research) project (Lougee-Heimer [43] or www.coin-or.org)
includes the OSI (Open Solver Interface) library, an API for linear programming
solvers, and NLPAPI, a subroutine library with routines for building nonlinear pro-
gramming problems. Another nonlinear interface, MOI (Modeler-Optimizer Inter-
face), is proposed along with xMPS in [32], and a similar interface is used in the
LINDO API [40].2

As part of our OS framework design we have developed OSiL, an XML-based
language designed as a new standard for representing optimization problem instances
of many significant kinds. As a brief example, Figure 4 shows the part of one OSiL
file that specifies the decision variables; a much more complete collection of examples
appears in [25]. OSiL serves as an instance-level format flexible enough to handle
linear and mixed-integer programs, quadratic programs, and very general nonlinear
programs, while its underlying principles are sufficiently powerful to allow for future
extensions. Thus it has the potential to serve as a new standard that subsumes the
many currently used input formats.

Designing a standard form may appear to involve not much more than adding
“tags” (delimited by < and > characters) to structured text files. In fact there is con-

is required to generate an instance. A linear programming model is typically described by linear
algebraic expressions, for example, while the corresponding instance is represented as a list of
nonzero coefficients of variables in the objective and constraints, along with bounds on the variables
and the constraint expressions.

2These are based on representing the nonlinear part of each constraint and the objective func-
tion in postfix (reverse Polish) notation [1] and then assigning integers to operators, characters to
operands, and integer indices to variables so that the data structure corresponds to the implemen-
tation of a stack machine.

C–11

<variables numberOfVariables="2">
<var lb="0" name="x0" type="C"/>
<var lb="0" name="x1" type="C"/>

</variables>

Figure 4: Excerpt from an OSiL file,
declaring two continuous variables x0, x1 ≥ 0.

<xs:complexType name="Variables">
<xs:sequence>

<xs:element name="var" type="Variable" maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="numberOfVariables"

type="xs:positiveInteger" use="required"/>
</xs:complexType>

Figure 5: The schema corresponding to Figure 4.

siderable research that must lie behind an XML-based form for anything as compli-
cated as optimization, as we have learned in this initial part of our project. Every
XML vocabulary must be defined by a “schema” in strictly specified ways; Figure 5
shows the schema for the <variables> tag used in Figure 4. For nonlinear expres-
sions, we wanted to be able to take advantage of the natural tree structure of XML
files, as shown in Figure 6, but many considerations were involved in determining
whether a schema could be devised to permit such an arrangement to be written
naturally and processed efficiently. We were able to take advantage of a feature of
schemas that permits a single abstract XML element to be specialized to elements
representing over a hundred different operators and functions.

We also had to consider how OSiL files would be used. Although there are
standards for shipping XML files around the Internet (SOAP [11]), the content of an
OSiL file must at some point be converted to an in-memory data structure, which
we call OSInstance. We found that OSInstance could be defined almost exactly in
parallel with the OSiL schema, even in the tricky nonlinear case, avoiding all of the

<nl idx="1">
<cos>

<plus>
<variable idx="0"/>
<variable idx="1"/>

</plus>
</cos>

</nl>

Figure 6: The OSiL element for the nonlinear expression cos(x0 + x1).

C–12

complication that would attend the definition of a separate data-structure standard.
A single API then handles reading and writing of both OSiL files and OSInstance
structures. Indeed, the most critical test for OSiL will come when its API is put
into use to begin connecting actual modeling systems and solvers.

The proposed research will take this initial work much further. To be truly com-
prehensive, OSiL and OSInstance will have to be extended to provide standards
for additional difficult cases, including complementarity and disjunctive constraints,
and cone, constraint, stochastic, and semidefinite programming. XML-based lan-
guages for communicating solver options (OSoL) and for returning results (OSrL)
will need to be established before OSiL can be truly useful for interfacing modeling
systems with solvers. Complete realization of the OS framework will require study
and design of numerous other XML dialects, for example to permit communication
between the modeler, the central repository, and various problem analyzers.

Establishing a standard. Whatever its good qualities may be, a format or
representation does not become a standard until it is widely used. Thus in our
dissemination of this work we will be particularly concerned to take steps that will
promote its wide use.

In support of OSiL and its associated languages, APIs, and protocols, we will
contribute a project to the previously mentioned COIN-OR website. A tie-in with
COIN-OR’s efforts to disseminate high-quality open-source OR software will help to
provide visibility for our efforts. Moreover, although COIN-OR is not a standards-
setting body at present, we may urge it to consider that role within the next few
years. Our interest in working with COIN-OR is attested by the recent election of
two participants in the Optimization Systems project (Profs. Fourer and Martin) to
the organization’s governing boards.

We will also produce open-source software to demonstrate the potential of our
proposed standards. We will make the APIs for our project available in several
popular languages; as this is written, we already have a complete API for OSiL in
Java, and an API for the linear part of OSiL in C++. We will also write interfaces
from our standards to popular solvers, and will provide several kinds of conversion
utilities to promote the initial use of our standards. A translator from AMPL’s nl
format [27] to OSiL, for example, will enable the AMPL modeling language to send
problems to any solver that has an OSiL interface; similar ties to OSoL and OSrL
will allow for a complete AMPL interface.

To further demonstrate the potential of OSiL, we will develop two tools that
will work on the OSInstance expression tree. One, the SOS-reformulation utility
for mixed-integer nonlinear optimization, has been discussed in the previous section.
The other will be a convexity detection and analysis tool based on DrAMPL [26], a
sophisticated “metasolver” that analyzes AMPL problem instances to symbolically
prove or disprove convexity and derive tight bounds on nonlinear expressions. We
will develop a language-independent version of DrAMPL that can be applied directly
to the OSInstance nonlinear data structure, making this tool potentially usable
with a broad class of modeling languages. Like our APIs and conversion utilities,
these tools will be contributed to COIN-OR to promote their widespread use within
the optimization community.

C–13

4. Broader Impact

From its outset, the NEOS project’s mission has been to make optimization a
part of the worldwide software cyberinfrastructure that supports science, engineer-
ing, and commerce. Its broad impact has thus primarily been a function of the great
variety of applications to which its solvers have been put. Indeed, as with other
infrastructures, the NEOS Server has proved to have substantial uses that could not
have been predicted in advance. A sample of applications that have been reported
to us, collected at neos.mcs.anl.gov/neos/stories.html, includes such varied ar-
eas as combinatorial auctions, supply-chain management, duty scheduling, agricul-
tural economics, chemistry, roll cutting, petroleum engineering, physics, electrical
engineering, neuroscience, circuit design, network design, protein structure predic-
tion, power engineering, process modeling, engineering mechanics and robotics.

A second kind of broad impact derives from the NEOS Server’s influence as a suc-
cessful cyberinfrastructure. Optimization, with its numerous independent modeling
and solving packages, was a natural area in which to try out the algorithm-server
idea. But we believe that it will now lead to consideration of similar ideas in other
areas that employ complex computational software of a general-purpose nature.

Our collection of applications also includes a large number from educational set-
tings of all kinds and at all levels. In addition to the many cases where NEOS is
used in teaching optimization itself, it is used more broadly in courses where optimi-
zation is a key component, such as microeconomics and civil engineering design. We
have also heard from many graduate students who find it valuable to their research.

The factors that underlie the NEOS Server’s broad impact to date are equally
relevant to the two research directions set forth in this proposal. Thus we are
confident that the proposed research will have the same broad impact.

5. Results of Prior NSF Support

Robert Fourer and Jorge J. Moré, “ITR: Advanced Application Service Pro-
vider Technologies for Large-Scale Optimization”: Grant CCR-0082807, $468,359
for September 2000 through August 2003.

Robert Fourer and Jorge J. Moré, “Next-Generation Servers for Optimiza-
tion as an Internet Resource”: Grant DMI-0322580, $374,969 plus $17,820 supple-
ment for September 2003 through August 2006.

The greatest part of our research under these grants has centered on the develop-
ment of the NEOS Server as a managed service provider for large-scale optimization
problems, as presented in Section 1. Nearly 175,000 optimization requests were han-
dled in 2005, for many educational, research, and commercial projects as described
in Section 4’s discussion of the Server’s broader impact. Our MINLP solver has han-
dled over 75,000 submissions since 1999, making it the most popular NEOS solver.

These grants have fostered the development of human resources in part by sup-
porting the writing of two doctoral dissertations, by Leo Lopes [42] and Jun Ma [44].
They have also supported two administrator/developers of NEOS, Elizabeth Dolan
and Jason Sarich, and one postdoctoral associate, Dominique Orban.

Representation standards for optimization problem instances. An ini-
tial XML-based standard for linear and integer programming was developed in col-

C–14

laboration with Leo Lopes and Kipp Martin [24]. The size of the XML files for lin-
ear programs was expected to be the greatest obstacle, but in fact the parsing speed
required the most attention.

A subsequent project with graduate student (now postdoctoral fellow) Jun Ma
[44] showed that nonlinear expression trees translate nicely to tree-oriented XML
representations, as discussed in Section 3. Challenging design issues also emerged
in handling user-defined functions, database references in problem instances, and
extensions for stochastic programming.

Analyzing and categorizing optimization problems prior to solving. A
collaboration with Dominique Orban of École Polytechnique de Montréal produced
methodologies for determining optimization problem types — including new ap-
proaches to attempting a proof or disproof of convexity — and for using a database
of solvers to determine which are most suitable to a given problem. John Chin-
neck of Carleton University, Ottawa worked with us to adapt some of his convexity-
analysis software so as to provide another point of comparison.

We found it necessary to include in our tests a wider variety of convexity-
disproving methods than expected. Also, in accumulating the expression bounds
that are essential to convexity proving, we found unexpected connections to theo-
ries of domain reduction in constraint programming.

Internet services for optimization. Version 5 of the NEOS Server, re-
leased in August 2005, represented a complete revamping of the Server’s infrastruc-
ture using modern software tools. Version 5 is implemented in Python, uses XML-
RPC for remote function calls, and improves resource utilization through a sim-
ple scheme that differentiates between long-running and short-running submissions.
The Python rewrite significantly reduced the code base size while improving read-
ability and maintainability.

The use of XML-RPC clients — freely available for C, C++, Java, Perl, Python,
Ruby, and other languages — introduced added flexibility as expected, but also made
possible a well-documented application programming interface for NEOS. This in-
terface greatly simplified the writing of software to submit optimization requests,
retrieve results, and communicate during execution. XML-based formats were in-
troduced for all communications.

The use of a database to record all submissions was another innovation of
NEOS 5. Complex database queries to obtain statistics and other information on
the submissions were made possible as a result.

Work on an ambitious optimization services framework for distributed environ-
ments proceeded on several levels, as described in detail in Section 3.

Benchmarking and verification. The supported work by Dolan and Moré
on performance profiles [13] was influential and widely adopted. It led to a study by
Dolan, Moré, and Munson [14] on optimality measures and associated convergence
tests, and their impact on benchmarking. We found that important differences in
performance profiles arise when benchmark studies employ a consistent convergence
test. Results show that almost all of the current optimization solvers use convergence
conditions that are not scale invariant.

Another report [15] by the same authors documents extensions and improve-
ments to the COPS test-problem set and provides a comparisons of five solvers. The
COPS problems and testing framework have been released to the public.

C–15

References Cited

[1] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques and Tools.
Addison-Wesley, Reading, MA, 1986.

[2] I. Akrotirianakis, I. Maros, and B. Rustem. An outer approximation based branch-and-
cut algorithm for convex 0-1 MINLP problems. Technical report 2000-06, Department
of Computing, Imperial College, London, June 2000.

[3] I. P. Androulakis and C. A. Floudas. Distributed branch and bound algorithms for
global optimization. In P. Pardalos, editor, Parallel Processing of Discrete Problems,
volume 106 of The IMA Volumes in Mathematics and Its Applications. Springer, 1999.

[4] K. Anstreicher, N. Brixius, J.-P. Goux, and J. Linderoth. Solving large quadratic
assignment problems on computational grids. Mathematical Programming, 91:563–588,
2002.

[5] G. Bradley. Introduction to extensible markup language (XML) with operations re-
search examples. Newletter of the INFORMS Computing Society, 24:1–20, 2003.

[6] G. Bradley. Network and graph markup language (NaGML) — data file formats. Tech-
nical Report NPS-OR-04-007, Department of Operations Research, Naval Postgraduate
School, Monterey, CA, USA, 2004. Available from the author, bradley@nps.navy.mil.

[7] T-H. Chang. Modelling and presenting mathematical programs with XML:LP. Masters
thesis, Department of Management, University of Canterbury, Christchruch, NZ, 2003.

[8] Q. Chen and M.C. Ferris. FATCOP: A fault tolerant condor-PVM mixed integer
program solver. SIAM Journal on Optimization, 11(4):1019–1036, 2001.

[9] Q. Chen, M.C. Ferris, and J. Linderoth. FATCOP 2.0: advanced features in an oppor-
tunistic mixed integer programming solver. Annals of Operations Research, 103:17–32,
2001.

[10] Stacy Collett. MSPs: The new hosts. Computerworld, 39(46):62–64, 2005.

[11] World Wide Web Consortium. SOAP version 1.2 part 0: Primer. W3C recommenda-
tion, 24 June 2003.

[12] E.D. Dolan, R. Fourer, J.J. Moré, and T.S Munson. Optimization on the NEOS server.
SIAM News, 35(6):4, 8–9, 2002.

[13] E.D. Dolan and J.J. Moré. Benchmarking optimization software with performance
profiles. Mathematical Programming, 91:201–213, 2002.

[14] E.D. Dolan, J.J. Moré, and T.S. Munson. Optimality measures for performance profiles.
SIAM Journal on Optimization, 16:891–909, 2006.

[15] E.D. Dolan, J.J. Moré, and T.S. Munson. Benchmarking optimization software with
COPS 3.0. Technical report ANL/MCS-TM-273, Mathematics and Computer Science
Division, Argonne National Laboratory, February 2004.

[16] V. Donde, V. López, B. Lesieutre, A. Pinar, C. Yang, and J. Meza. Identification of
severe multiple contingencies in electric power networks. In Proceedings of the 37th
North American Power Symposium. Iowa State University, October 2005.

[17] M. Duran and I. E. Grossmann. An outer-approximation algorithm for a class of
mixed–integer nonlinear programs. Mathematical Programming, 36:307–339, 1986.

[18] J. Eckstein. Parallel branch–and–bound algorithms for general mixed integer program-
ming on the CM–5. SIAM Journal on Optimization, 4(4):794–814, 1994.

D–1

[19] J. Eckstein, C.A. Phillips, and W.E. Hart. PICO: An object-oriented framework for
parallel branch and bound. In Proceedings of the Workshop on Inherently Parallel Al-
gorithms in Optimization and Feasibility and their Applications, Studies in Computa-
tional Mathematics, pages 219–265. Elsevier Scientific, 2001.

[20] O.C. Ezechukwu and I. Maros. OOF: open optimization framework. Technical Report
ISSN 1469-4174, Department of Computing, Imperial College of London, London, UK,
2003.

[21] R. Fletcher and S. Leyffer. Numerical experience with lower bounds for MIQP branch–
and–bound. SIAM Journal on Optimization, 8(2):604–616, 1998.

[22] C. A. Floudas. Nonlinear and Mixed–Integer Optimization. Topics in Chemical Engi-
neering. Oxford University Press, New York, 1995.

[23] R. Fourer. Modeling languages versus matrix generators for linear programming. ACM
Transactions on Mathematical Software, 9:143–183, 1983.

[24] R. Fourer, L. Lopes, and K. Martin. LPFML: A W3C XML schema for linear and
integer programming. INFORMS Journal on Computing, 17:139–158, 2005.

[25] R. Fourer, J. Ma, and K. Martin. OSiL: An instance language for optimization. Tech-
nical report, Northwestern University, January 2006.

[26] R. Fourer and D. Orban. DrAMPL: A meta solver for optimization. Technical report,
IEMS Department, Northwestern University, Evanston, IL, January 2006.

[27] D.M. Gay. Hooking your solver to AMPL. Technical report, Bell Laboratories, Mur-
ray Hill, NJ, 1993. Revised 1994, 1997; available at www.ampl.com/REFS/abstracts.
html#hooking2.

[28] J.-P. Goux and S. Leyffer. Solving large MINLPs on computational grids. Optimization
and Engineering, 3:327–346, 2002.

[29] I. E. Grossmann. Review of nonlinear mixed-integer and disjunctive programming
techniques. Optimization and Engineering, 3:227–252, 2002.

[30] I. E. Grossmann and Z. Kravanja. Mixed–integer nonlinear programming: A survey
of algorithms and applications. In A.R. Conn L.T. Biegler, T.F. Coleman and F.N.
Santosa, editors, Large–Scale Optimization with Applications, Part II: Optimal Design
and Control, New York, Berlin, 1997. Springer.

[31] I. E. Grossmann and R. W. H. Sargent. Optimal design of multipurpose batch plants.
Ind. Engng. Chem. Process Des. Dev., 18:343–348, 1979.

[32] B.V. Halldórsson, E.S. Thorsteinsson, and B. Kristjánsson. A modeling interface to
non-linear programming solvers an instance: xMPS, the extended MPS format. Tech-
nical report, Carnegie Mellon University and Maximal Software, 2000.

[33] IBM. Passing your model using mathematical programming system (MPS) format,
2003. http://www-306.ibm.com/software/data/bi/osl/pubs/Library/featur11.
htm.

[34] G.R. Kocis and I.E. Grossmann. Global optimization of nonconvex mixed–integer
nonlinear programming (MINLP) problems in process synthesis. Industrial Engineering
Chemistry Research, 27:1407–1421, 1988.

[35] B. Kristjánsson. Optimization modeling in distributed applications: how new tech-
nologies such as XML and SOAP allow OR to provide web-based services, 2001. http:
//www.maximal-usa.com/slides/Svna01Max/index.htm.

[36] P.S. Laursen. Can parallel branch and bound without communication be effective?
SIAM J. Optimization, 4(2):288–296, 1994.

D–2

[37] S. Leyffer. User manual for MINLP. University of Dundee, 1998.

[38] J. T. Linderoth and M. W. P. Savelsbergh. A computational study of search strategies
for mixed integer programming. INFORMS Journal of Computing, 11:173–187, 1999.

[39] J.T. Linderoth and S.J. Wright. Implementing a decomposition algorithm for stochastic
programming on a computational grid. Computational Optimization and Applications,
24:207–250, 2003.

[40] Lindo Systems, Inc. LINDO API user’s manual. Technical report, Lindo Systems, Inc.,
2002. http://www.lindo.com/lindoapi pdf.zip.

[41] M. Livny, J. Basney, R. Raman, and T. Tannenbaum. Mechanisms for high-throughput
computing. In Speedup 11, 1997. Available from www.cs.wisc.edu/condor/doc/htc_
mech.ps.

[42] Leonardo B. Lopes. Modeling Stochastic Optimization: From Idea to Instance. PhD
thesis, Northwestern University, 2004.

[43] Robin Lougee-Heimer. The Common Optimization INterface for operations research.
IBM Journal of Research and Development, 47(1):57–66, 2003.

[44] Jun Ma. Optimization Services. PhD thesis, Northwestern University, 2005. Available
at www.optimizationservices.org or gsbkip.chicagogsb.edu/os/thesis.pdf.

[45] A. Martin, M. Möller, and S. Moritz. Mixed integer models for the stationary case of
gas network optimization. Mathematical Programming, 105(2–3):563–2, 2006.

[46] National Science Foundation. An operations cyberinfrastructure: Using cyberinfra-
structure and operations research to improve productivity in the enterprise. Work-
shop report, National Science Foundation, August 30-31, 2004. Available at www.
optimization-online.org/OCI/OCI.pdf.

[47] National Science Foundation. Revolutionizing science and engineering through cyber-
infrastructure. Report of the blue-ribbon advisory panel on cyberinfrastructure, Na-
tional Science Foundation, January 2003. Available at http://www.nsf.gov/od/oci/
reports/atkins.pdf.

[48] J. F. Pekny and D. L. Miller. A parallel branch and bound algorithm for solving
large asymmetric traveling salesman problems. Mathematical Programming, 55(1):17–
33, 1992.

[49] A.J. Quist, R. van Geemert, J.E. Hoogenboom, T. Illés, E. de Klerk, C. Roos, and
T. Terlaky. Optimization of a nuclear reactor core reload pattern using nonlinear
optimization and search heuristics. Draft paper, Delft University of Technology, Faculty
of Applied Mathematics, Department of Operation Research, Mekelweg 4, 2628 CD
Delft, The Netherlands, September 1997.

[50] Aaron Skonnard and Martin Gudgin. Essential XML Quick Reference. Pearson Edu-
cation, Inc, Boston, MA, 2002.

[51] J. A. Tomlin. A suggested extension of special ordered sets to non-separable non-convex
programming problems. In P. Hansen, editor, Studies in Graph Theory and Discrete
Programming, pages 359–370. North Holland Publishing Company, 1981.

[52] J. Viswanathan and I. E. Grossmann. Optimal feed location and number of trays for
distillation columns with multiple feeds. I&EC Research, 32:2942–2949, 1993.

[53] T. Westerlund, J. Isakson, and I. Harjunkoski. Solving a production optimization
problem in the paper industry. Report 95–146–A, Department of Chemical Engineering,
Abo Akademi, Abo, Finland, 1995.

D–3

