
Optimization Methods
Draft of August 26, 2005

III.
Solving Linear Programs
by Interior-Point Methods

Robert Fourer

Department of Industrial Engineering and Management Sciences
Northwestern University
Evanston, Illinois 60208-3119, U.S.A.

(847) 491-3151

4er@iems.northwestern.edu
http://www.iems.northwestern.edu/˜4er/

Copyright c© 1989–2004 Robert Fourer

B–72 Optimization Methods — §9.3

Draft of August 26, 2005 B–73

10. Essential Features

Simplex methods get to the solution of a linear program by moving from
vertex to vertex along edges of the feasible region. It seems reasonable that
some better method might get to an optimum faster by instead moving through
the interior of the region, directly toward the optimal point. This is not as easy
as it sounds, however.

As in other respects the low-dimensional geometry of linear programs can be
misleading. It is convenient to think of two-dimensional and three-dimensional
feasible regions as being polyhedrons that are fairly round in shape, but these
are the cases in which a long step through the middle is easy to see and makes
great progress. When there are thousands or even millions of variables, it is
quite another matter to “see” a path through the feasible polyhedron, which
typically is highly elongated. One possibility, building on the simplex method,
would be to increase from zero not one but all variables that have negative
reduced costs. No practical way has been found, however, to compute steps
based only on the reduced costs that tend to move through the center of the
polyhedron toward the optimum rather than across to boundary points that are
far from the optimum (and are not necessarily vertex points).

The key to an effective interior-point method is to borrow a few simple ideas
from nonlinear optimization. In the context of linear programming, these ideas
are sufficiently elementary that we can develop them independently. Applica-
tions to general nonlinear programming will be taken up in subsequent chap-
ters.

10.1 Preliminaries

We show in this chapter how an effective interior-point method can be de-
rived from a simple idea for solving the optimality conditions for linear pro-
gramming. We consider in particular the complementary slackness conditions
that were derived in Part III for primal and dual linear programs in the form

Minimize cT x Maximize bT π
Subject to Ax = b Subject to AT π ≤ c

x ≥ 0

Complementary slackness says that x∗ and π∗ are optimal provided that they
satisfy

. Primal feasibility: Ax∗ = b, x∗ ≥ 0

. Dual feasibility: AT π∗ ≤ c

. Complementarity:
Either x∗

j = 0 or aT
j π∗

j = cj (or both), for each j = 1, . . . , n

To make these conditions easier to work with, we begin by writing them as
equations in nonnegative variables. We treat all vectors as column vectors.

We start by introducing a vector of slack variables, σ , so that AT π∗ ≤ c
may be expressed equivalently by AT π∗ + σ ∗ = c and σ ∗ ≥ 0. In these terms,

B–74 Optimization Methods — §10.1

AT π∗ = c if and only if σ ∗ = 0, so the complementary slackness conditions
become x∗

j = 0 or σ ∗
j = 0 (or both). But saying that x∗

j = 0 or σ ∗
j = 0 is

equivalent to saying that x∗
j σ ∗

j = 0. Thus we have the following equivalent
statement of the complementary slackness conditions: x∗ and π∗ are optimal
provided that they satisfy

. Primal feasibility: Ax∗ = b, x∗ ≥ 0

. Dual feasibility: AT π∗ + σ ∗ = c, σ ∗ ≥ 0

. Complementarity: x∗
j σ ∗

j = 0 for every j = 1, . . . , n

These conditions comprise a “square” system of m+2n equations in the m+2n
variables (x, π, σ), plus nonnegativity of x and σ .

It remains to collect the equations xjσj = 0 into a matrix equation. For this
purpose, we define diagonal matrices X and Σ whose only nonzero elements are
Xjj = xj and Σjj = σj , respectively. For example, for n = 4,

X =


x1 0 0 0
0 x2 0 0
0 0 x3 0
0 0 0 x4

 and Σ =


σ1 0 0 0
0 σ2 0 0
0 0 σ3 0
0 0 0 σ4

 .

The diagonal elements of XΣ are xjσj , exactly the expressions that must be zero
by complementary slackness, so we could express complementary slackness as

XΣ =


x1σ1 0 0 0

0 x2σ2 0 0
0 0 x3σ3 0
0 0 0 x4σ4

 =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 .

But this is n2 equations, of which all but n are 0 = 0. Instead we collapse the
equations to the n significant ones by writing

XΣe =


x1σ1 0 0 0

0 x2σ2 0 0
0 0 x3σ3 0
0 0 0 x4σ4




1
1
1
1

 =


x1σ1

x2σ2

x3σ3

x4σ4

 =


0
0
0
0

 .

where e is a vector whose elements are all 1. We will write this as XΣe = 0, with
the 0 understood as in previous chapters to refer to a vector of zeroes.

We have now shown that solving the primal optimization problem for x
and the dual optimization problem for π is equivalent to solving the following
combined system of equations and nonnegativity restrictions:

Ax = b
AT π + σ = c
XΣe = 0

x ≥ 0, σ ≥ 0

Draft of August 26, 2005 B–75

We can regard the interior points (x̄, π̄ , σ̄) of this system to be those that satisfy
the inequalities strictly: x̄ > 0, σ̄ > 0. Our goal is to show how interior-point
methods can generate a series of such points that tend toward a solution of the
linear program.

Diagonal matrices will prove to be convenient throughout the development
of interior-point methods. If F and G are matrices having the vectors f =
(f1, . . . , fn) and g = (g1, . . . , gn) on their diagonals and zeroes elsewhere, then

. FT = F

. FG = GF is a diagonal matrix having nonzero elements fjgj .

. F−1 is a diagonal matrix having nonzero elements f −1
j , or 1/fj .

. F−1G = GF−1 is a diagonal matrix having nonzero elements gj/fj .

. Fe = f , and F−1f = e, where e is a vector of all 1’s.

We write F = diag(f) to say that F is the diagonal matrix constructed from f .
As in these examples, we will normally use lower-case letters for vectors and the
corresponding upper-case letters for the corresponding diagonal matrices.

10.2 A simple interior-point method

Much as we did in the derivation of the simplex method, we’ll start off by
assuming that we already know primal-feasible and dual-feasible interior-point
solutions x̄ and (π̄, σ̄):

� Ax̄ = b, x̄ > 0

� AT π̄ + σ̄ = c, σ̄ > 0

Our goal is to find solutions x∗ and (π∗, σ ∗) such that Ax∗ = b and AT π∗ +
σ ∗ = c, but with x∗ and σ ∗ being not interior but instead complementary:
x∗

j ≥ 0, σ ∗
j ≥ 0, and at least one of the two is = 0, for each j = 1, . . . , n. We’ll

later show (in Section 11.2) that the interior-point approach is easily extended to
start from any point (x̄, π̄ , σ̄) that has x̄ > 0 and σ̄ > 0, regardless of whether
the equations are initially satisfied.

We can now give an elementary explanation of the method. Starting from a
feasible, interior-point solution (x̄, π̄ , σ̄), we wish to find a step (∆x, ∆π, ∆σ)
such that (x̄ + ∆x, π̄ + ∆π, σ̄ + ∆σ) is a better such solution, in the sense that
it comes closer to satisfying the complementarity conditions.

To find the desired step, we substitute (x̄+∆x, π̄+∆π, σ̄ +∆σ) into the equa-
tions for feasibility and complementarity of the solution. Writing X̄ = diag(x),Σ̄ = diag(σ) and ∆X = diag(∆x), ∆Σ = diag(∆σ) in line with our previous
notation, we have

A(x̄ + ∆x) = b
AT (π̄ + ∆π) + (σ̄ + ∆σ) = c
(X̄ + ∆X)(Σ̄ + ∆Σ)e = 0

Since we’re given Ax̄ = b and AT π̄ + σ̄ = c, these equations simplify to

B–76 Optimization Methods — §10.2

A∆x = 0
AT ∆π + ∆σ = 0
X̄∆σ + Σ̄∆x = −X̄Σ̄e − ∆X∆Σe

We would like to solve these m + 2n equations for the steps — the m + 2n∆-values — but although all the terms on the left are linear in the steps, the
term ∆X∆Σe on the right is nonlinear. So long as each ∆xj is small relative to
x̄j and each ∆σj is small relative to σ̄j , however, we can expect each ∆xj∆σj
to be especially small relative to x̄jσ̄j . This suggests that we can get a reason-
able approximate solution for the steps by solving the linear equations that are
produced by dropping the ∆X∆Σe term from the above equations. (The same
approach will return in a later chapter, in a more general setting, as Newton’s
method for solving nonlinear equations.)

With the ∆X∆Σe term dropped, we can solve the third equation for ∆σ ,

∆σ = X̄−1(−X̄Σ̄e − Σ̄∆x) = −σ̄ − X̄−1Σ̄∆x,

and substitute for ∆σ in the second equation to get

A∆x = 0
AT ∆π − X̄−1Σ̄∆x = σ̄

The matrix X̄−1 requires no special work to compute; because X̄ has nonzero
entries only along its diagonal, so does X̄−1, with the entries being 1/xj .

Rearranging our equations in matrix terms, we have an (m + n) × (m + n)
equation system in the unknowns ∆x and ∆π :[

−X̄−1Σ̄ AT

A 0

] [∆x∆π

]
=

[
σ̄
0

]
.

Because X̄−1Σ̄ is another diagonal matrix — it has entries σ̄j/x̄j along its diago-
nal — we can optionally solve for ∆x,

∆x = −X̄Σ̄−1(σ̄ − AT ∆π) = −x̄ + (X̄Σ̄−1)AT ∆π,

and substitute for ∆x in A∆x = 0 to arrive at an m × m equation system,

A(X̄Σ̄−1)AT ∆π = Ax̄ = b.

The special forms of these equation systems guarantee that they have solutions
and allow them to be solved efficiently.

At this point we could hope to use (x̄ + ∆x, π̄ + ∆π, σ̄ + ∆σ) as our new,
improved solution. Some of the elements of x̄ + ∆x and σ̄ + ∆σ might turn out
to be negative, however, whereas they must be positive to keep our new solution
within the interior of the feasible region. To prevent this, we instead take our
new solution to be

(x̄ + θ(∆x), π̄ + θ(∆π), σ̄ + θ(∆σ))

Draft of August 26, 2005 B–77

where θ is a positive fraction ≤ 1. Because the elements of the vectors x̄ and σ̄
are themselves > 0, we know that x̄ + θ(∆x) and σ̄ + θ(∆σ) will also be strictly
positive so long as θ is chosen small enough. (The vectors ∆x and ∆σ serve
here as what are known as step directions rather than whole steps, and θ is the
step length.)

The derivation of a formula for θ is much like the derivation of the “min-
imum ratio” criterion for the simplex method (Part II). For each ∆xj ≥ 0, the
value of x̄ + θ(∆x) can only increase along with θ; but for ∆xj < 0, the value
decreases. Thus we require

x̄j + θ(∆xj) > 0 =⇒ θ <
x̄j

−∆xj
for each j such that ∆xj < 0.

The same reasoning applied to σ̄ + θ(∆σ) gives

σ̄j + θ(∆σj) > 0 =⇒ θ <
σ̄j

−∆σj
for each j such that ∆σj < 0.

For θ to be less than all of these values, it must be less than their minimum, and
so we require

θ ≤ 1, θ < θx = min
j:∆xj<0

x̄j

−∆xj
, θ < θσ = min

j:∆σj<0

σ̄j

−∆σj
.

To implement this criterion we pick some fraction α < 1 and take

θ = min(1, αθx, αθσ).

It suffices to stick with one α value for all steps of the algorithm. We would
like to use a value of α close to 1, but far enough from 1 to keep the solution
comfortably within the interior; we’ll show some examples for the choice of this
value later.

We have now laid out the basic algorithm — often called the affine scaling
interior-point method for linear programming — whose details are collected in
Figure 10–1. Given a feasible interior solution, we compute the next solution
by solving the given equations for the step direction, determining a step length,
and forming a new solution accordingly.

But how do we know when to stop? Because Ax̄ = b and A∆x = 0, every
new solution remains primal-feasible:

A(x̄ + θ(∆x)) = Ax̄ + θ(A∆x) = b.

Similarly, because AT π̄ +σ̄ = c and AT ∆π +∆σ = 0, every new solution remains
dual-feasible:

AT (π̄ + θ(∆π)) + (σ̄ + θ(∆σ)) = AT π̄ + σ̄ + θ(AT ∆π + ∆σ) = c.

All of the elements of the vectors x and σ remain strictly positive, however,
whereas the complementary slackness conditions require that either xj = 0 or
σj = 0 for each j = 1, . . . , n. Hence, in a sense, this algorithm can never generate
an optimal solution!

B–78 Optimization Methods — §10.3

Given x̄ such that Ax̄ = b, x̄ > 0.
Given π̄ , σ̄ such that AT π̄ + σ̄ = c, σ̄ > 0.

Choose a step fraction 0 < α < 1.
Choose a complementarity tolerance ε > 0.

Repeat

Solve

[
−X̄−1Σ̄ AT

A 0

] [∆x∆π

]
=

[
σ̄
0

]
and set ∆σ = −σ̄ − X̄−1Σ̄∆x.

Let θx = min
j:∆xj<0

x̄j

−∆xj
, θσ = min

j:∆σj<0

σ̄j

−∆σj
.

Let θ = min(1, αθx, αθσ).

Update x̄ = x̄ + θ(∆x), π̄ = π̄ + θ(∆π), σ̄ = σ̄ + θ(∆σ).

until x̄jσ̄j < ε for all j = 1, ..., n.

Figure 10–1. An “affine scaling” primal-dual interior-point algorithm.

What we could aim to show, however, is that the complementarity terms
xjσj get progressively closer to 0 as the algorithm proceeds, in such a way that
they can be made as close to zero as we like provided that enough steps of the
algorithm are run. In this case the values xjσj are said to converge to zero. We
could then also hope to prove that the iterates (x̄, π̄ , σ̄) converge to a solution
that achieves an optimal value for the objective.

For our algorithm we thus pick a small positive value ε, and stop iterating
when all of the σ̄jx̄j values are less than this ε. We do not take ε to be zero,
because we know that the algorithm cannot reduce all σ̄jx̄j to zero after any
finite number of steps. Because computers can only work with numbers to some
finite number of places, moreover, the computations are only approximate, and
tend to become unreliable as the iterates approach the optimal boundary point.
Tolerances of this sort are an important aspect of any convergent algorithm.

10.3 An example

We illustrate the geometry of the interior-point method on the following two-
variable example, for which the feasible region is graphed in Figure 10–2:

Minimize 2x1 + 1.5x2

Subject to 12x1 + 24x2 ≥ 120
16x1 + 16x2 ≥ 120
30x1 + 12x2 ≥ 120

x1 ≤ 15
x2 ≤ 15

x1 ≥ 0, x2 ≥ 0

Our starting point x̄ must lie in the interior of the feasible region shown in the

Draft of August 26, 2005 B–79

figure. The iterates will progress through the interior toward the optimal vertex,
(12/3, 55/6).

To illustrate the computations, we add appropriate slack variables to trans-
form this problem to one of equalities in nonnegative variables:

Minimize 2x1 + 1.5x2

Subject to 12x1 + 24x2 − x3 = 120
16x1 + 16x2 − x4 = 120
30x1 + 12x2 − x5 = 120

x1 + x6 = 15
x2 + x7 = 15

x1, . . . , x7 ≥ 0

From the figure it is clear that (x̄1, x̄2) = (10, 10) is a point near the middle
of the feasible set. Substituting into the equations, we can easily solve for the
values of the slack variables (x̄3, . . . , x̄7), which are all positive at any interior
point. Then we have as an initial primal iterate,

x̄ =



10
10

240
200
300

5
5


> 0.

For an initial dual iterate, the algorithm requires a π̄ such that σ̄ = c −AT π̄ > 0.
Writing these equations explicitly, we have

Figure 10–2. The feasible region for the example of Section 10.3, with two iteration
paths of an affine-scaling interior-point method.

B–80 Optimization Methods — §10.3

σ̄1 = 2 − 12π̄1 − 16π̄2 − 30π̄3 − 1π̄4 > 0
σ̄2 = 1.5 − 24π̄1 − 16π̄2 − 12π̄3 − 1π̄5 > 0
σ̄3 = 0 + 1π̄1 > 0
σ̄4 = 0 + 1π̄2 > 0
σ̄5 = 0 + 1π̄3 > 0
σ̄6 = 0 − 1π̄4 > 0
σ̄7 = 0 − 1π̄5 > 0

These can be satisfied by picking positive values for the first three π -variables,
and then setting the remaining two sufficiently negative; π̄1 = π̄2 = π̄3 = 1 and
π̄4 = π̄5 = −60 will do, for example. We then have

π̄ =
[

1 1 1 −60 −60,
]

,

σ̄ =
[

4 9.5 1 1 1 60 60
]

> 0.

In our matrix terminology, we also have

c =
[

2 1.5 0 0 0 0 0
]

,

A =


12 24 −1 0 0 0 0
16 16 0 −1 0 0 0
30 12 0 0 −1 0 0

1 0 0 0 0 1 0
0 1 0 0 0 0 1

 , b =


120
120
120
15
15

 .

We choose the step fraction α = 0.995, which — for our examples — gives
reliable results that cannot be improved upon by settings closer to 1. Finally,
we specify a complementarity tolerance ε = 0.00001, so that the algorithm will
stop when all x̄jσ̄j < .00001.

To begin an iteration, the algorithm must form the linear equation system[
−X̄−1Σ̄ AT

A 0

] [∆x∆π

]
=

[
σ̄
0

]
.

In the matrix’s upper left-hand corner is a diagonal block whose entries are
−σ̄j/x̄j . Below this block is a copy of the matrix A, and to its right is a copy
of AT , with the lower right-hand block filled out by zeros. The right-hand side
is a copy of σ̄ filled out by zeros. So the entire system to be solved at the first
iteration in our example is

−.4000 0 0 0 0 0 0 12 16 30 1 0
0 −.9500 0 0 0 0 0 24 16 12 0 1
0 0 −.0042 0 0 0 0 −1 0 0 0 0
0 0 0 −.0050 0 0 0 0 −1 0 0 0
0 0 0 0 −.0033 0 0 0 0 −1 0 0
0 0 0 0 0 −12 0 0 0 0 1 0
0 0 0 0 0 0 −12 0 0 0 0 1

12 24 −1 0 0 0 0 0 0 0 0 0
16 16 0 −1 0 0 0 0 0 0 0 0
30 12 0 0 −1 0 0 0 0 0 0 0
1 0 0 0 0 1 0 0 0 0 0 0
0 1 0 0 0 0 1 0 0 0 0 0





∆x1∆x2∆x3∆x4∆x5∆x6∆x7∆π1∆π2∆π3∆π4∆π5


=



4
9.5
1
1
1

60
60

0
0
0
0
0


.

Draft of August 26, 2005 B–81

(The vertical and horizontal lines are shown only to emphasize the matrix’s
block structure; they have no mathematical significance.)

The study of solving an equation system of this kind is a whole topic in itself.
For now, we simply report that the solution is

∆x =



−0.1017
−0.0658
−2.7997
−2.6803
−3.8414

0.1017
0.0658


, ∆π =


−0.9883
−0.9866
−0.9872
61.2208
60.7895

 .

We can then set∆σ = −σ̄ − X̄−1Σ̄∆x

= −



4
9.5
1
1
1

60
60


−



.4000 0 0 0 0 0 0
0 .9500 0 0 0 0 0
0 0 .0042 0 0 0 0
0 0 0 .0050 0 0 0
0 0 0 0 .0033 0 0
0 0 0 0 0 12 0
0 0 0 0 0 0 12





−0.1017
−0.0658
−2.7997
−2.6803
−3.8414

0.1017
0.0658



=



−3.9593
−9.4375
−0.9883
−0.9866
−0.9872

−61.2208
−60.7895


.

The entire step vector (∆x, ∆π, ∆σ) has now been computed.
The remainder of the iteration determines the length of the step. The ra-

tio x̄j/(−∆xj) is computed for each of the five ∆xj < 0, and θx is set to the
smallest:∆x1 < 0 : x̄1/(−∆x1) = 10/0.1017 = 98.3284∆x2 < 0 : x̄2/(−∆x2) = 10/0.0658 = 152.0034∆x3 < 0 : x̄3/(−∆x3) = 240/2.7997 = 85.7242∆x4 < 0 : x̄4/(−∆x4) = 200/2.6803 = 74.6187 = θx∆x5 < 0 : x̄5/(−∆x5) = 300/3.8414 = 78.0972

The ratios σ̄j/(−∆σj) are computed in the same way to determine θσ :

∆σ1 < 0 : σ̄1/(−∆σ1) = 4/3.9593 = 1.0103∆σ2 < 0 : σ̄2/(−∆σ2) = 9.5/9.4375 = 1.0066∆σ3 < 0 : σ̄3/(−∆σ3) = 1/0.9883 = 1.0118∆σ4 < 0 : σ̄4/(−∆σ4) = 1/0.9866 = 1.0136∆σ5 < 0 : σ̄5/(−∆σ5) = 1/0.9872 = 1.0130∆σ6 < 0 : σ̄6/(−∆σ6) = 60/61.2208 = 0.9801 = θσ∆σ7 < 0 : σ̄7/(−∆σ7) = 60/60.7895 = 0.9870

B–82 Optimization Methods — §10.3

The step length is thus given by

θ = min(1, αθx, αθσ)
= min(1, .995 · 74.6187, .995 · 0.9801) = 0.975159.

Thus the iteration concludes with the computation of the next iterate as

x̄ = x̄ + θ(∆x) =



10
10

240
200
300

5
5


+ 0.975159



−0.1017
−0.0658
−2.7997
−2.6803
−3.8414

0.1017
0.0658


=



9.9008
9.9358

237.2699
197.3863
296.2541

5.0992
5.0642


,

and similarly for π̄ and σ̄ .
Although there are 7 variables in the form of the problem that the algorithm

works on, we can show the algorithm’s progress in Figure 10–2 by plotting the
points defined by the x1 and x2 components of the iterates. In the first iteration,
we have moved from (10, 10) to (9.9008, 9.9358).

If we continue in the same way, then the algorithm carries out a total of 9
iterations before reaching a solution that satisfies the stopping conditions:

iter x1 x2 θ max x̄jσ̄j

0 10.0000 10.0000 − − − 300.000000
1 9.9008 9.9358 0.975159 11.058316
2 6.9891 9.2249 0.423990 6.728827
3 3.2420 8.5423 0.527256 2.878729
4 1.9835 6.6197 0.697264 1.156341
5 2.0266 5.4789 0.693037 0.486016
6 1.8769 5.6231 0.581321 0.189301
7 1.7204 5.7796 0.841193 0.027134
8 1.6683 5.8317 0.979129 0.000836
9 1.6667 5.8333 0.994501 0.000004

The step length drops at iteration 2 but then climbs toward the ideal step length
of 1. The max x̄jσ̄j term steadily falls, until at the end it has a value that is not
significantly different from zero.

Consider now what happens when we try a different starting point, not so
well centered:

x̄ =



14
1

72
120
312

1
14


, π̄ =


0.01
0.01
0.01

−1.00
−1.00

 .

The first 10 iterations proceed as follows:

Draft of August 26, 2005 B–83

iter x1 x2 θ max x̄jσ̄j

0 14.0000 1.0000 − − − 33.880000
1 13.3920 0.7515 0.386962 21.275227
2 11.9960 0.7102 0.126892 18.625818
3 9.7350 0.6538 0.242316 14.301476
4 8.6222 0.6915 0.213267 11.413212
5 8.1786 0.9107 0.197309 9.246931
6 6.9463 1.5269 0.318442 6.536069
7 5.0097 2.4951 0.331122 4.467188
8 5.0000 2.5000 0.117760 3.942131
9 5.0000 2.5000 0.217604 3.084315

10 5.0000 2.5000 0.361839 1.968291

The iterates have become stuck near the boundary, in particular near the non-
optimal vertex point (5,2.5). (The iterates indeed appear to reach the vertex
point, but that is only because we have rounded the output at the 4th place.)
Over the next 10 iterations the steps make little further progress, with θ falling
to minuscule values:

iter x1 x2 θ max x̄jσ̄j

11 5.0000 2.5000 0.002838 1.962706
12 4.9999 2.5001 0.000019 1.962668
13 4.9999 2.5001 0.000011 1.962647
14 4.9998 2.5002 0.000021 1.962606
15 4.9996 2.5004 0.000042 1.962525
16 4.9991 2.5009 0.000083 1.962362
17 4.9983 2.5017 0.000165 1.962037
18 4.9966 2.5034 0.000330 1.961390
19 4.9932 2.5068 0.000658 1.960100
20 4.9865 2.5135 0.001312 1.957527

Then finally the iterates start to move along (but slightly interior to) the edge
defined by 16x1+16x2 ≥ 120, eventually approaching the vertex that is optimal:

iter x1 x2 θ max x̄jσ̄j

21 4.9732 2.5268 0.002617 1.952404
22 4.9466 2.5534 0.005216 1.942219
23 4.8941 2.6059 0.010386 1.922042
24 4.7909 2.7091 0.020642 1.882350
25 4.5915 2.9085 0.040872 1.805354
26 4.2178 3.2822 0.080335 1.660168
27 3.5612 3.9388 0.155645 1.401765
28 2.5521 4.9479 0.293628 0.994245
29 1.6711 5.8289 0.418568 0.603264
30 1.6667 5.8333 0.227067 0.466640
31 1.6667 5.8333 0.398038 0.280902
32 1.6667 5.8333 0.635639 0.102350
33 1.6667 5.8333 0.864063 0.013913
34 1.6667 5.8333 0.977201 0.000317
35 1.6667 5.8333 0.994594 0.000002

Although x1 and x2 have reached their optimal values at the 30th iteration, the
algorithm requires 5 more iterations to bring down the maximum x̄jσ̄j and so
to prove optimality. The θ step values also remain low until near the very end.

B–84 Optimization Methods — §10.4

Figure 10–2 shows the paths taken in both of our examples. It’s easy to
see here that one starting point was much better centered that the other, but
finding a well-centered starting point for a large linear program is in general a
hard problem — as hard as finding an optimal point. Thus there is no reliable
way to keep the affine scaling method from sometimes getting stuck near the
boundary and taking a large number of iterations. This difficulty motivates a
“centered” method that we consider next.

10.4 A centered interior-point method

To avoid the poor performance of the affine scaling approach, we need a way
to keep the iterates away from the boundary of the feasible region, until they
begin to approach the optimum. One very effective way to accomplish this is to
keep the iterates near a well-centered path to the optimum.

Given the affine scaling method, the changes necessary to produce a such a
centered method are easy to describe:

. Change the complementary slackness conditions xjσj = 0 to
xjσj = µ, where µ is a positive constant.

. Start with a large value of µ, and gradually reduce it toward 0 as
the algorithm proceeds.

We explain first how these changes affect the computations — the differences
are minor — and why they have the desired centering effect. We can then moti-
vate a simple formula for choosing µ at each step.

The centering steps. The modified complementary slackness conditions rep-
resent only a minor change in the equations we seek to solve. In matrix form
they are:

Ax = b
AT π + σ = c
XΣe = µe

x ≥ 0, σ ≥ 0

(Since e is a vector of all ones, µe is a vector whose elements are all µ.) Because
none of the terms involving variables have been changed, the equations for the
step come out the same as before, except with the extra µe term on the right:

A∆x = 0
AT ∆π + ∆σ = 0
X̄∆σ + Σ̄∆x = µe − X̄Σ̄e − ∆X∆Σe

Dropping the ∆X∆Σ term once more, and solving the third equation to substi-
tute

∆σ = X̄−1(µe − X̄Σ̄e − Σ̄∆x) = −σ̄ − X̄−1(Σ̄∆x − µe),

into the second, we arrive at almost the same equation system, the only change
being the replacement of σ̄ by σ̄ − µX̄−1e in the right-hand side:

Draft of August 26, 2005 B–85

[
−X̄−1Σ̄ AT

A 0

] [∆x∆π

]
=

[
σ̄ − µX̄−1e

0

]
.

(The elements of the vector µX̄−1e are µ/x̄j .) Once these equations are solved,
a step is determined as in affine scaling, after which the centering parameter µ
may be reduced as explained later in this section.

Intuitively, changing xjσj = 0 to xjσj = µ tends to produce a more centered
solution because it encourages both xj and σj to stay away from 0, and hence
the boundary, as the algorithm proceeds. But there is a deeper reason. The
modified complementarity conditions are the optimality conditions for a modi-
fied optimization problem. Specifically, x∗ and (π∗, σ ∗) satisfy the conditions:

Ax∗ = b, x∗ ≥ 0
AT π∗ + σ ∗ = c, σ ∗ ≥ 0
x∗

j σ ∗
j = µ, for each j = 1, . . . , n

if and only if x∗ is optimal for

Minimize cT x − µ
n∑

j=1

log xj

Subject to Ax = b
x ≥ 0

This is known as the log barrier problem for the linear program, because the log
terms can be viewed as forcing the optimal values x∗

j away from zero. Indeed,
as any xj approaches zero, −µ log xj goes to infinity, thus ruling out any suffi-
ciently small values of xj from being part of the optimal solution. Reducing µ
does allow the optimal values to get closer to zero, but so long as µ is positive
the barrier effect remains. (The constraints x ≥ 0 are needed only when µ = 0.)

A centered interior-point algorithm is thus often called a barrier method
for linear programming. Only interior points are generated, but since µ is de-
creased gradually toward 0, the iterates can converge to an optimal solution in

Figure 10–3. The central path for the feasible region shown in Figure 10–2.

B–86 Optimization Methods — §10.4

which some of the x∗
j are zero. The proof is not as mathematically elementary

as that for the simplex method, so we delay it to a future section, along with
further modifications that are important to making barrier methods a practical
alternative for solving linear programs.

Barrier methods also have an intuitive geometric interpretation. We have
seen that as µ → 0, the optimal solution to the barrier problem approaches the
optimal solution to the original linear program. On the other hand, as µ → ∞,
the cT x part of the barrier problem’s objective becomes insignificant and the op-
timal solution to the barrier problem approaches the minimizer of

∑n
j=1 log xj

subject to Ax = b. This latter point is known as the analytic center; in a sense
it is the best-centered point of the feasible region.

If all of the solutions to the barrier problem for all values of µ are taken
together, they form a curve — or path — from the analytic center of the feasible
region to a non-interior optimal solution. Figure 10–3 depicts the central path
for the feasible region plotted in Figure 10–2.

Choice of the centering parameter. If we were to run the interior-point
method with a fixed value µ̂ of the barrier parameter, it would eventually con-
verge to the point (x̂, π̂ , σ̂) on the central path that satisfies

Ax̂ = b, x̂ ≥ 0
AT π̂ + σ̂ = c, σ̂ ≥ 0
x̂jσ̂j = µ̂, for each j = 1, . . . , n

We do not want the method to find such a point for any positive µ̂, however,
but to approximately follow the central path to a point that satisfies these equa-
tions for µ̂ = 0. Thus rather than fixing µ, we would like in general to choose
successively smaller µ values as the algorithm proceeds. On the other hand we
do not want to choose too small a value too soon, as then the iterates may fail
to become sufficiently centered and may exhibit the slow convergence typical of
affine scaling.

These considerations suggest that we take a more adaptive approach. Given
the current iterate (x̄, π̄ , σ̄), we first make a rough estimate of a value of µ
corresponding to a nearby point on the central path. Then, to encourage the
next iterate to lie further along the path, we set the barrier parameter at the
next iteration to be some fraction of our estimate.

To motivate a formula for an estimate of µ, we observe that, if the current
iterate were actually on the central path, then it would satisfy the modified
complementarity conditions. For some µ, we would have

x̄1σ̄1 = x̄2σ̄2 = . . . = x̄nσ̄n = µ

The current iterate is not on the central path, so these terms are in general all
different. As our estimate, however, we can reasonably take their average,

µ = 1
n

n∑
j=1

x̄jσ̄j = σ̄ x̄
n

.

Then we can take as our centering parameter at the next iteration some fixed
fraction β of this estimate:

Draft of August 26, 2005 B–87

Given x̄ such that Ax̄ = b, x̄ > 0.
Given π̄ , σ̄ such that AT π̄ + σ̄ = c, σ̄ > 0.

Choose a step feasibility fraction 0 < α < 1.
Choose a step complementarity fraction 0 < β < 1.
Choose a complementarity tolerance ε > 0.

Repeat

Let µ̄ = β
σ̄ x̄
n

.

Solve

[
−X̄−1Σ̄ AT

A 0

] [∆x∆π

]
=

[
σ̄ − µ̄X̄−1e

0

]
and

set ∆σ = −σ̄ − X̄−1(Σ̄∆x − µ̄e).

Let θx = min
j:∆xj<0

x̄j

−∆xj
, θσ = min

j:∆σj<0

σ̄j

−∆σj
.

Let θ = min(1, αθx, αθσ).

Update x̄ = x̄ + θ(∆x), π̄ = π̄ + θ(∆π), σ̄ = σ̄ + θ(∆σ).

until ∆xj∆σj < ε for all j = 1, ..., n.

Figure 10–4. A “barrier” primal-dual interior-point algorithm.

µ̄ = β
σ̄ x̄
n

.

This is the last detail of the simple barrier method, which we summarize in
Figure 10–4. (Among the more powerful extensions and refinements to this
method is an approach that first computes an affine scaling “predictor” step,
which provides estimates of µ̄ and of the previously dropped ∆X∆Σe term for a
subsequent barrier “corrector” step.)

10.5 Example, continued

Consider now how our first example from Section 10.3 would proceed using
the barrier method. We take the step-length parameter α to be 0.99995; we can
make it much closer to 1 than for the affine scaling method, because there is
less danger of getting stuck near the boundary. For the parameter β that figures
in the determination of the centering multiplier µ̄, a value of 0.1 works well. We
set ε to 0.00001 as before.

At the start of the first iteration we have

µ̄ = β(σ̄ x̄)/n
= 0.1(4·10 + 9.5·10 + 1·240 + 1·200 + 1·300 + 5·60 + 5·60)/7

= 21.0714

In the equations for the step, the term σ̄ in the right-hand side is replaced by

B–88 Optimization Methods — §10.5

σ̄ − µ̄X̄−1e =



4
9.5
1
1
1

60
60


− 21.0714



1/10
1/10

1/240
1/200
1/300

1/5
1/5


=



1.8929
7.3929
0.9122
0.8946
0.9298

55.7857
55.7857


.

The matrix and the rest of the right-hand side are as they were before, however,
so we solve

[
−X̄−1Σ̄ AT

A 0

] [∆x∆π

]
=

[
σ̄ − µ̄X̄−1e

0

]
=



1.8929
7.3929
0.9122
0.8946
0.9298

55.7857
55.7857

0
0
0
0
0



.

Once this system has been solved for ∆x and ∆π , the rest of the barrier iteration
is the same as an affine scaling iteration. Thus we omit the details, and report
only that the step length comes out to be

θ = min(1, αθx, αθσ)
= min(1, .99995 · 93.7075, .99995 · 1.0695) = 1

and the next iterate is computed as

x̄ = x̄ + θ(∆x) =



10
10

240
200
300

5
5


+ 1.0



0.0314
0.0534
1.6576
1.3564
1.5829

−0.0314
−0.0534


=



10.0314
10.0534

241.6576
201.3564
301.5829

4.9686
4.9466


.

Whereas the first iteration of affine scaling on this example caused x1 and x2 to
decrease, the first step of the barrier method increases them. Although the path
to the solution is different, however, the number of iterations to optimality is
still 9:

Draft of August 26, 2005 B–89

Figure 10–5. Iteration paths of the barrier interior-point method, starting from the
same two points as in the Figure 10–2 plots for the affine scaling method.

Figure 10–6. Detail from the plots for the (14,1) starting point shown in Figures 10–2
and 10–5. The affine scaling iterates (open diamonds) get stuck near the sub-optimal
vertex (5,2.5), while the barrier iterates (filled circles) skip right past the vertex.

B–90 Optimization Methods — §10.5

iter x1 x2 θ µ max x̄jσ̄j

0 10.0000 10.0000 − − − − − − 300.000000
1 10.0314 10.0534 1.000000 21.071429 24.013853
2 9.1065 9.5002 0.896605 2.107143 5.536077
3 1.8559 7.6205 0.840474 0.406796 1.725153
4 1.6298 5.9255 0.780709 0.099085 0.654632
5 1.7156 5.7910 1.000000 0.029464 0.060567
6 1.6729 5.8294 1.000000 0.002946 0.003894
7 1.6671 5.8332 1.000000 0.000295 0.000304
8 1.6667 5.8333 1.000000 0.000029 0.000030
9 1.6667 5.8333 1.000000 0.000003 0.000003

As our discussion of the barrier method would predict, the centering parameter
µ starts out large but quickly falls to near zero as the optimum is approached.
Also, thanks to the centering performed at the first several steps, the step dis-
tance θ soon returns to its ideal value of 1.

When the barrier method is instead started from the poorly-centered point
of Section 10.3, it requires more iterations, but only about a third as many as
affine scaling:

iter x1 x2 θ µ max x̄jσ̄j

0 14.0000 1.0000 − − − − − − 33.880000
1 13.0939 0.9539 0.465821 0.798571 19.325423
2 7.9843 1.0080 0.481952 0.463779 10.839497
3 7.0514 1.6930 0.443953 0.262612 6.544525
4 4.5601 2.9400 0.479414 0.157683 3.747461
5 4.4858 3.1247 0.539274 0.089647 1.806038
6 2.2883 5.2847 0.543138 0.046137 0.885009
7 1.6356 5.9110 0.495625 0.023584 0.507843
8 1.7235 5.7945 0.971205 0.013064 0.034860
9 1.6700 5.8312 1.000000 0.001645 0.002064

10 1.6669 5.8332 1.000000 0.000164 0.000167
11 1.6667 5.8333 1.000000 0.000016 0.000016
12 1.6667 5.8333 1.000000 0.000002 0.000002

Figure 10–5 plots the iteration paths taken by the barrier method from our two
starting points. The path from the point that is not well-centered still tends to
be near the boundary, but that is not so surprising — the first 8 iterations take
a step that is .99995 times the step that would actually reach the boundary.

The important thing is that the barrier method avoids vertex points that
are not optimal. This can be seen more clearly in Figure 10–6, which, for the
starting point (14,1), plots the iterates of both methods in the neighborhood
of the vertex (5,2.5). Affine scaling “jams” around this vertex, while the barrier
iterations pass it right by.

Draft of August 26, 2005 B–91

11. Practical Refinements and Extensions

This chapter considers various improvements to interior-point methods that
have proved to be very useful in practice:

. Taking separate primal and dual step lengths

. Starting from points that do not satisfy the constraint equations

. Handling simple bounds implicitly

Further improvements, not discussed here, include the computation of a predic-
tor and a corrector step at each iteration to speed convergence, and the use of
a “homogeneous” form of the linear program to provide more reliable detection
of infeasible and unbounded problems.

11.1 Separate primal and dual step lengths

To keep things simple, we have defined a single step length for both the
primal and the dual iterates. But to gain some flexibility, we can instead choose
x̄ + θ(∆x) as the next primal iterate and (π̄ + φ(∆π), σ̄ + φ(∆σ)) as the next
dual iterate. As before, since Ax̄ = b and A∆x = 0, every iterate remains
primal-feasible:

A(x̄ + θ(∆x)) = Ax̄ + θ(A∆x) = b.

Moreover, because AT π̄ + σ̄ = c and AT ∆π + ∆σ = 0, every iterate remains
dual-feasible:

AT (π̄ + φ(∆π)) + (σ̄ + φ(∆σ)) = AT π̄ + σ̄ + φ(AT ∆π + ∆σ) = c.

The different primal and dual steps retain these properties because the primal
and dual variables are involved in separate constraints.

We now have for the primal variables, as before,

x̄j + θ(∆xj) > 0 =⇒ θ <
x̄j

−∆xj
for each j such that ∆xj < 0.

But now for the dual variables,

σ̄j + φ(∆σj) > 0 =⇒ φ <
σ̄j

−∆σj
for each j such that ∆σj < 0.

It follows that

θ ≤ 1, θ < θx = min
j:∆xj<0

x̄j

−∆xj
,

φ ≤ 1, φ < φσ = min
j:∆σj<0

σ̄j

−∆σj
.

Independent formulas for the step lengths are thus given by

θ = min(1, αθx), φ = min(1, αφσ),

B–92 Optimization Methods — §11.3

where α < 1 is a chosen parameter as before.

11.2 Infeasible starting points

The assumption of an initial feasible solution has been convenient for our
derivations, but is not essential. If Ax̄ = b does not hold, then the equations for
the step are still A(x̄ + ∆x) = b, but they only rearrange to

A∆x = b − Ax̄

rather than simplifying to A∆x = 0. Similarly if AT π̄ + σ̄ = c does not hold,
then the associated equations for the step are still AT (π̄ + ∆π) + (σ̄ + ∆σ) = c,
but they only rearrange to

AT ∆π + ∆σ = c − AT π̄ − σ̄

rather than simplifying to AT ∆π + ∆σ = 0. As was the case in our derivation
of the barrier method, however, this generalization only changes the constant
terms of the step equations. Thus we can proceed as before to drop a ∆x∆σ
term and eliminate ∆σ to give[

−X̄−1Σ̄ AT

A 0

] [∆x∆π

]
=

[
(c − AT π̄) − µX̄−1e

(b − Ax̄)

]
.

Again the matrix is the same. The only difference is the addition of a few terms
in the right-hand side. After the step equations have been solved, the compu-
tation of the step length and the determination of a new iterate can proceed as
before.

Methods of this kind are called, naturally, infeasible interior-point methods.
Their iterates may eventually achieve feasibility:

. If at any iteration the step length θ = 1, then the new primal iterate
x̄ + θ(∆x) is simply x̄ + ∆x, which satisfies A(x̄ + ∆x) = Ax̄ + A∆x =
b + 0 = b. Hence the next iterate is primal-feasible, after which the algo-
rithm works like the previous, feasible one and all subsequent iterates are
primal-feasible.

. If at any iteration the step length φ = 1, then the new dual iterate (π̄ +
θ(∆π), σ̄ + θ(∆σ)) is simply (π̄ + ∆π, σ̄ + ∆σ), which satisfies AT (π̄ +∆π) + (σ̄ + ∆σ) = (AT π̄ + σ̄) + (AT ∆π + ∆σ) = c + 0 = c. Hence the next
iterate is dual-feasible, after which the algorithm works like the previous,
feasible one and all subsequent iterates are dual-feasible.

After both a θ = 1 and a φ = 1 step have been taken, therefore, the algorithm
behaves like a feasible interior-point method. It can be proved however that
even if all primal step lengths θ < 1 or all dual step lengths φ < 1 then the
iterates must still converge to a feasible point.

Draft of August 26, 2005 B–93

11.3 Bounded variables

The logic of our previous interior-point method derivations can be extended
straightforwardly to the case where the variables are subject to bounds xj ≤ uj .
We work with the following primal-dual pair, which incorporates additional dual
variables corresponding to the bound constraints:

Minimize cT x Maximize bT π − λu
Subject to Ax = b Subject to πA − λ ≤ c

x ≤ u λ ≥ 0
x ≥ 0

There are now two sets of complementarity conditions:

. Either xj = 0 or πaj − λj = cj (or both), for each j = 1, . . . , n

. Either λj = 0 or xj = uj (or both), for each j = 1, . . . , n

Writing σj for cj −(πaj −λj) and sj for uj −xj , these conditions are equivalent
to xjσj = 0 and λjsj = 0.

Thus the primal feasibility, dual feasibility, complementarity, and nonnega-
tivity conditions for the barrier problem are

Ax = b, x + s = u
AT π − λ + σ = c
XΣe = µe, ΛSe = µe

x ≥ 0, σ ≥ 0, s ≥ 0, λ ≥ 0

From this point the step equations is much as before. We substitute x̄ + ∆x for
x, s̄ + ∆s for s, and so forth for the other variables; drop the terms ∆X∆Σe and∆Λ∆Se; and use three of the five equations to eliminate the slack vectors ∆λ,∆σ , and ∆s. The remaining equations are[

−X̄−1Σ̄ − S̄−1Λ̄ AT

A 0

] [∆x∆π

]

=
[

(c + λ̄ − AT π̄) − S̄−1Λ̄(u − x̄) − µ(X̄−1 − S̄−1)e
(b − Ax̄)

]
.

These equations may look a lot more complicated, but they’re not much more
work to assemble than the ones we previously derived. In the matrix, the only
change is to replace −X̄−1Σ̄ by −X̄−1Σ̄ − S̄−1Λ̄, another diagonal matrix whose
entries are x̄jσ̄j + s̄jλ̄j . The expression for the right-hand side vector, although
it has a few more terms, still involves only vectors and diagonal matrices, and
so remains inexpensive to compute.

The starting point for this extended method can be any x̄ > 0, σ̄ > 0, s̄ > 0,
λ̄ > 0. As in the infeasible method described previously, the solution need not
initially satisfy any of the equations. In particular, the solution may initially fail
to satisfy x̄ + s̄ = u, and in fact x̄ may start at a value greater then u. This is
because the method handles x ≤ u like any other constraint, adding slacks to
make it just another equality in nonnegative variables.

B–94 Optimization Methods — §11.3

As an alternative we can define an interior point to be one that is strictly
within all its bounds, upper as well as lower. This means that the initial solution
has to satisfy 0 < x̄ < u as well as σ̄ > 0, λ̄ > 0. Thus rather than treating s
as an independent variable, we can define s̄ = u − x̄ > 0, in which case the
right-hand-side term S̄−1Λ̄(u − x̄) = S̄−1Λ̄s̄ = λ̄ and the step equations can be
simplified to look more like the ones for the non-bounded case:[

−X̄−1Σ̄ − S̄−1Λ̄ AT

A 0

] [∆x∆π

]
=

[
(c − AT π̄) − µ(X̄−1 − S̄−1)e

(b − Ax̄)

]
.

To proceed in this way it is necessary to pick the step length θ so that 0 <
x̄ + θ(∆x) < u, however. Thus we require

x̄j + θ(∆xj) > 0 =⇒ θ <
x̄j

−∆xj
for each j such that ∆xj < 0,

and also

x̄j + θ(∆xj) < u =⇒ θ <
u − x̄j∆xj

for each j such that ∆xj > 0.

To keep θ less than all these values, we must choose it less than their minimum.
Adding the conditions necessary to keep σ̄ + θ(∆σ) > 0 and λ̄ + θ(∆λ) > 0, we
arrive at

θ ≤ 1, θ < θx = min
j:∆xj<0

x̄j

−∆xj
, θ < θs = min

j:∆xj>0

u − x̄j∆xj
,

φ ≤ 1, φ < φσ = min
j:∆σj<0

σ̄j

−∆σj
, φ < φλ = min

j:∆λj<0

λ̄j

−∆λj
.

It then remains only to pick some fraction α < 1 and take

θ = min(1, αθx, αθs), φ = min(1, αφσ , φθλ).

Despite the appeal of keeping x̄ strictly within its bounds, however, this ap-
proach has been observed in practice to take longer to solve linear programs
than the one that lets x̄ start at any positive value. This is apparently because
the latter method provides more flexibility in the choice of a well-centered start-
ing point.

