
Optimization Methods
Draft of August 26, 2005

IV.
Solving Network Problems

Robert Fourer

Department of Industrial Engineering and Management Sciences
Northwestern University
Evanston, Illinois 60208-3119, U.S.A.

(847) 491-3151

4er@iems.northwestern.edu
http://www.iems.northwestern.edu/˜4er/

Copyright c
 1989–2004 Robert Fourer

B–96 Optimization Methods — x11.3

Draft of August 26, 2005 B–97

Introduction

You have seen how networks motivate many kinds of linear programming
models. In fact, the influence of networks on operations research models is
much broader than just linear programming. Some network problems cannot
be solved as linear programs, and in fact are much harder to solve. Others
are so easy that solving them as linear programs is more work than necessary.
Still others are most efficiently solved by a network simplex method that is
specialized to be much faster than the general-purpose method that you have
learned.

This part begins with a survey of some of the best-known network models.
Then it considers the solution and analysis of different models in greater detail.

B–98 Optimization Methods — x11.3

Draft of August 26, 2005 B–99

12. Network Optimization Examples

A network is defined by a set N of nodes, and a set A of arcs connecting
the nodes. We write �i; j� 2 A to say that there is an arc between nodes i 2 N
and j 2 N . Where necessary, we will represent the numbers of nodes and arcs
by jN j and jAj.

In a directed network, the arc �i; j� is regarded as extending from node i to
node j. Typically, a directed network model involves a flow or transportation of
something along the arcs, in the specified directions. In an undirected network,
the arc �i; j� just represents a connection between nodes i and j. An undirected
network model may allow flows in either direction along an arc, or may not
involve explicit flows at all.

A network can be visualized by drawing the nodes as circles, and the arcs as
lines between them. For a directed network, the lines are arrows pointing in the
appropriate directions:

The node set here is obviously f1;2;3;4;5g. The set of arcs connecting the
nodes is f�1;2�; �1;3�; �1;4�; �2;4�; �3;4�; �3;5�; �4;5�g.

12.1 Minimum spanning trees

A circuit in a network is a collection of arcs that are connected together in
a circle, while a tree is a collection of arcs that are connected together without
containing any circuits:

A spanning tree in a network is a collection of arcs that form a tree and that
connect to every node. Here is an example of a spanning tree in the network
above:

B–100 Optimization Methods — x12.2

A spanning tree is a useful pattern for cheaply interconnecting all the nodes in
a network. The number of arcs in the spanning tree equals the number of nodes
minus one, and between any two nodes there is a unique path along the tree.

How cheaply can a spanning tree interconnect the nodes? Suppose that there
is a cost or distance cij associated with each arc �i; j� 2 A. Then you can look
for the spanning tree whose arcs have the lowest total cost or distance. In more
formal algebraic terms, you want to

Minimize
T�A

X

�i;j�2T
cij

where the subsets T are limited to those that represent spanning trees within
the network.

Since there are only finitely many spanning trees within a network, this min-
imization is well defined. However, a large network may contain a very large
number of spanning trees, so it is not immediately clear how much work may
be involved in finding a minimum one.

12.2 Shortest paths

A path from node s 2 N to node t 2 N is a sequence of arcs that lead
from s to t: �s; i1�, �i1; i2�, �i2; i3�, . . . , �ik�1; ik�, �ik; t�. A path within a network
looks like this:

Draft of August 26, 2005 B–101

When there are many paths from s to t, you would naturally want to take the
cheapest or shortest one. If cij represents the cost or distance of travel along
arc �i; j� 2A, then you want to solve

Minimize
P�A

X

�i;j�2P
cij

where the subsets P are limited to those that represent paths within the net-
work.

Clearly, if the network is undirected, then the shortest path problem is much
the same as the minimum spanning tree problem, except that it minimizes over
paths rather than spanning trees. You can also imagine the problem on a di-
rected network, however. In the directed shortest path problem, you must be
able to travel a path from s to t without going “backwards” along any arc.

12.3 Travel problems

There are many problems like the shortest path problem, but minimizing
costs or distances over different kinds of paths. We mention here two of the
best known. Both can be defined on either an undirected or a directed network.

A circuit, as defined above, is a path from some node s back to itself. A
circuit that makes one visit to every node in the network is called a Hamiltonian
circuit. If you think of the network nodes as cities, then the problem of finding
a shortest Hamiltonian circuit amounts to finding the shortest trip that visits
all the cities. For this reason, it is universally known as the traveling salesman
problem.

A related problem is to find a circuit that does not merely visit every node,
but that in fact contains every arc (some possibly more than once). Finding a
shortest circuit of this kind is naturally known as the postman problem.

All of the problems described so far in this section involve finding the short-
est or cheapest subset of arcs from among a finite, though perhaps very large,
collection. You will see later than some of them are reasonably easy to solve,
while others are—in a certain sense—impossibly hard.

12.4 Maximum flows

In many kinds of directed network models, there is a flow xij associated
with each arc �i; j� 2A. A collection of flows is considered to be feasible if, for
each node j 2 N , the total flow on all arcs out of j minus the total flow on all
arcs into j satisfies some appropriate equation or inequality. Formally,

X

k:�j;k�2A
xjk �

X

i:�i;j�2A
xij

8><
>:
�
�
�

9>=
>; bj :

If this constraint is an equality and bj � 0, then it says that flow out equals flow
in; in other words, there is conservation of flow at node j. When bj is positive,
the flow out is greater than the flow in, so the node is a source of bj units of
flow; on the other hand, when bj is negative, the flow in is greater than the flow
out, and the node is a sink for bj units. Interpretation of inequalities is similar.

B–102 Optimization Methods — x12.5

Often there are additional constraints in the form of bounds on the flows. In
general these are lij � xij � uij , where lij is a lower bound and uij is an upper
bound on the flow from i to j.

A well-known simple flow problem is to maximize the total flow out of a
designated source s and into a designated sink t, subject to conservation of
flow at all the intermediate nodes, and upper bounds on all flows. The solution
to this maximum flow problem gives the capacity of the whole network in a
certain sense.

12.5 Minimum cost flows

In many models each arc �i; j� also has an associated cost cij per unit of
flow. If linearity of costs can be assumed, then the total cost of flow along the
arc is cijxij .

A minimum cost network flow model seeks a feasible flow that has the lowest
total cost of flows. A simple version can be written as

Minimize
P
�i;j�2A cijxij

Subject to
P
k:�j;k�2A xjk �

P
i:�i;j�2A xij � bj ; j 2N

xij � 0; �i; j� 2A
This is just a simple version of the network linear programs that you have al-
ready seen. More elaborate versions were formulated in Part I of these notes.

Some of the other network problems above are easily viewed as special cases
of the minimum cost flow problem. To find the shortest path from s to t, for ex-
ample, we can interpret cij as the distance from i to j; we take bs � 1, bt � �1,
and bj � 0 otherwise. Thus there is a source of one unit at s, and a sink of one
unit at t, with conservation of flow elsewhere. The integrality property of net-
work linear programs, as explained in Part I, guarantees in this particular case
that the optimal value of each flow will be either x�ij � 0 or x�ij � 1. Moreover,
the arcs �i; j� such that x�ij � 1 always form a path, while the objective value
reduces to

X

�i;j�:x�ij�1

cij

which is the length of the shortest path.
For the maximum flow problem, no flow constraints are imposed at nodes

s and t; rather, the objective is to maximize the net flow sent out of s, which
equals the flow out minus any flow in:

Maximize
P
k:�s;k�2A xsk �

P
i:�i;s�2A xis

Subject to
P
k:�j;k�2A xjk �

P
i:�i;j�2A xij � bj ; j 2Nnfs; tg

0 � xij � uij ; �i; j� 2A
Exactly the same results are achieved by maximizing the net flow into t, which
equals the flow in minus any flow out at t. In many cases s has only outgoing
arcs (or t has only incoming arcs) so that the objective is just to maximize the
total flow out of s (or equivalently the total flow into t).

Draft of August 26, 2005 B–103

13. “Easy” Network Problems

Many network problems can be solved by specialized algorithms that are
particularly simple or fast. To show the variety of these algorithms, we present
examples here for the minimum spanning tree, shortest path and maximum
flow problems.

13.1 Finding minimum spanning trees

An intuitively attractive way to find a “good” subset of arcs—like a span-
ning tree of low cost—is to build up the subset by adding one “good” arc at a
time. This approach turns out to work very well for the minimum spanning tree
problem.

As an example, the diagram below shows an undirected network, with the
labels on the arcs indicating their costs. To start, we pick one of the cheapest
arcs; both (1,2) and (6,7) have a cost of 3, and we arbitrarily decide to take (1,2):

To extend the tree, we next look for the cheapest arc that is connected at either
node 1 or node 2. The possibilities are:

arc cost

(1,3) 8
(1,4) 4
(2,4) 6
(2,5) 5

Clearly the cheapest is (1,4), so we add it to the tree:

B–104 Optimization Methods — x13.1

To further extend the tree, we now naturally look for the cheapest arc that is
connected at nodes 1, 2 or 4:

arc cost

(1,3) 8
(2,4) �
(2,5) 5
(4,3) 6
(4,5) 6
(4,7) 7

Although (2,4) is connected to the tree, we cannot consider it. The problem is
that it connects to the tree at both node 2 and node 4, so that its addition would
form a circuit; recall that a tree must be a connected subset of arcs that contains
no circuits. Thus we choose to add the cheapest of the other connected arcs,
(2,5), to the tree.

You can now see how this algorithm proceeds in general. At the kth step, it
has already found a tree of k arcs connecting k � 1 nodes. It then examines all
arcs �i; j� such that one of i and j is in the tree, and one is out, and it adds any
one of the cheapest such arcs to the tree. The tree is consequently extended by
one arc and one node, and the next step can begin. After jN j�1 steps all nodes
have been connected, and by definition the tree must be a spanning tree.

In the example above, you can verify that the remaining three steps add the
arcs (4,3), (4,7) and (7,6), giving the following spanning tree:

Draft of August 26, 2005 B–105

The total cost of the tree is 28.
It can be shown that this algorithm always leads to a spanning tree that has

minimum cost. If there is a tie for cheapest arc at any step, it can be broken ar-
bitrarily; in such a case, there may be more than one spanning tree that achieves
the minimum for the network.

A procedure of this kind is called a greedy or myopic algorithm, because
it just makes the obviously most attractive move at every iteration, without
ever going back to make any adjustments. Unfortunately, greedy algorithms
are seldom guaranteed to be optimal for problems of interest; the minimum
spanning tree problem is one of the best known exceptions.

This is an easy algorithm to implement for a computer. You just need to be
able to find, for every node in the tree, all arcs connected to it. This can be done
efficiently by setting up an appropriate data structure. For example, for each
node you might keep a list of all other nodes that are connected to it by an arc.

13.2 Finding maximum flows

A similar kind of incremental approach can be used to try to find maximum
flows between two nodes in a network. At each step some additional flow is
added on a path from the origin s to the destination t, until all possible paths
have reached their capacity.

In the example shown below1 there are two labels on each arc, the first repre-
senting the amount of flow and the second the amount of unused capacity. Ini-
tially, all flows are zero, and all unused capacities equal the flow upper bounds:

1Adapted from F.S. Hillier and G.J. Lieberman, Introduction to Operations Research, 3rd
edition, pp. 241-246.

B–106 Optimization Methods — x13.2

Clearly some of the flow can be handled along the path s b e t. The greatest flow
that can be handled is 5, since any more will overload the arc �b; e�. Suppose
that we indeed put 5 units of flow on this path. All flows along the path increase
by 5, and all of the unused capacities decrease by 5:

We can also send some flow along the path s b d t. Because only two units of
capacity are left along the arc �s; b�, the largest possible flow on the path at
this point is just two units. We thus increase the flows along the path by 2, and
decrease the unused capacities by the same amount:

Draft of August 26, 2005 B–107

At this stage there is a total flow of 7 out of s and into t.
Additional augmenting paths like the ones above can be found to carry pos-

itive flows subject to the remaining capacities. We can successively add all of
the following:

path flow

s a d t 3
s a b d t 1
s c e t 1
s c e d t 1

The resulting flows and unused capacities are then as follows:

The total flow has increased to 13.
There are only a finite number of paths from s to t. If you check all of them

now, you will find that every one includes an arc with no unused capacity. No
further paths of improvement are available.

Even so, the flow is not a maximum! We can take one of the units of flow
routed b e t, and send it along b d t instead. Then capacity will be opened up
to send one more unit on s c e t, and the flow will be increased to 14. For this
problem, the obvious myopic approach has failed.

B–108 Optimization Methods — x13.2

Fortunately, in this case the algorithm can be fixed up without too much
trouble. You can think of the adjustment that allows the increase to 14 as
adding one unit of “flow” along the “path” s c e b d t. On each forward arc,
a unit of flow is added (and the unused capacity is reduced) as before; but on
the backward arc e b, a unit of flow is subtracted (and the unused capacity is
increased):

The result is an adjusted flow that is still feasible for the network, and that takes
one more unit of material from s to t.

To make the algorithm work, then, we must consider all paths from s to t
that contain any combination of forward and backward arcs. In particular, each
step looks for a path of this kind that is augmenting in the following sense:
every forward arc has a positive capacity (so that it can accept an increase in
flow) and every backward arc has a positive flow (so that it can accept a decrease
in flow). The amount of augmentation is equal to the smallest capacity on any
forward arc, or the smallest flow on any backward arc, whichever is less. The
step is completed by increasing the flow (and decreasing the unused capacity)
on each forward arc by the amount of augmentation, and by decreasing the flow
(and increasing the unused capacity) on each backward arc by the amount of
augmentation.

It can be shown that, if no augmenting flow in this expanded sense is pos-
sible, then the flow has indeed been maximized. This condition holds in the
example above, so that the maximum flow is in fact 14.

Another way to see that the maximum must be 14 in this case is to consider
all the arcs from the nodes fs; a; b; c; eg to the nodes fd; tg. Because the total
capacity of these arcs — �a;d�, �b;d�, �e; d� and �e; t� — is only 14, there is
no way that a flow of more than 14 could possibly get from s to t. Arcs that
partition the network in this way are known as a cut. The fact that smallest
capacity of any cut is 14 in this case is not an accident, for the following can be
proved:

Max-flow min-cut theorem: For any maximum flow problem, the ca-
pacity of the minimum cut is equal to the maximum flow.

Draft of August 26, 2005 B–109

Actually, this is just a special case of linear programming duality. If you take the
dual of the linear program that is equivalent to the maximum flow problem, as
described in the previous section, then you get a linear program that is equiva-
lent to the minimum cut problem. The above theorem follows immediately from
the fact that the two linear programs have the same optimal objective value.

In implementing the augmenting path method on a computer, there are two
crucial considerations: to find augmenting paths quickly, and to avoid having to
look for them too many times. Very efficient and clever schemes for both these
purposes have been discovered. There exist versions that require an effort only
proportional to jN j3, regardless of how many arcs there are. Other methods
can be even more efficient when the network is sufficiently sparse that jAj is
much less than jN j2 (where jN j2 is approximately the largest number of arcs
that a network of jN j nodes can have).

13.3 Finding shortest paths

Shortest path problem is another network problem that can be solved by
linear programming, but that has other faster methods of solution. The idea
is to first find the shortest path from s to the closest of all nodes, then the
shortest path to the next-closest node, and so forth until the shortest path to t
is discovered.

To explain more precisely how this approach works, we’ll use the following
terminology pertaining to the kth-closest node:

sk the kth closest node to s
Sk the set containing s and all the k closest nodes to s

We’ll also use

cij the length of the arc �i; j�
‘i the length of the shortest path from s to node i 2N

Naturally cij � 0 for all arcs �i; j�, and the shortest path from node s to itself is
‘s � 0. Furthermore, if we write shortest distance from s to any other node as

csq � min
�s;j�2A

csj ;

then q is the closest node to s; so we easily find s1 � q, S1 � fs; qg and ‘q � csq.
The challenge is to now continue by finding s2, s3, and so forth. In general, we
want a way to find sk�1 and the shortest path to it, once we have already found
the shortest paths to all the nodes in Sk; then Sk�1 � Sk [fsk�1g.

To see how this is done, observe first that all the nodes along the path to
sk�1, the �k� 1�st closest node, are even closer to s. Thus

All nodes on the on the shortest path from s to sk�1 are in Sk, except
for sk�1 itself.

What then does the shortest path to the �k�1�st closest node look like? It might
be just one arc from s to sk�1. In general, however, it consists of a path from s
through some nodes in Sk, plus one more arc from a node in Sk to sk�1.

B–110 Optimization Methods — x13.3

Thus, in looking for the �k� 1�st closest node, we can confine our search to
the set of all arcs that connect a node in Sk to a node not in Sk. We’ll call the set
of all such arcs Tk:

Tk the set of all arcs �i; j� 2A such that i 2 Sk but j � Sk
What is the length of the shortest path that ends with some particular arc �i; j� 2
Tk? You can find it by taking the length of the shortest path to i, which you
already know is ‘i since i 2 Sk, and then adding on the length of �i; j�, which is
cij . Hence you know that the shortest path ending with �i; j� 2 Tk has length
‘i � cij .

Now we are prepared to claim that the �k � 1�st closest node can be found
by solving:

min
�i;j�2Tk

‘i � cij :

Suppose the minimum occurs for a node �q; r� 2 Tk. Then the �k� 1�st closest
node sk�1 � r , and the length of the path to it is ‘q � cqr . The actual shortest
path is found by just taking the shortest path from s to q, which is known, and
appending �q; r�.

The shortest path algorithm consists of up to jN j steps. At the kth step,
Sk�1 is determined from Sk by the minimization described above. If the shortest
path from s to t is wanted, then the algorithm stops as soon as sk�1 happens to
be t at some step. If the algorithm is continued for all jN j steps, then it finds
a shortest path from s to all other nodes (assuming all can be reached over the
network from s).

As an example, we’ll use the following network similar to the one above:

It’s obvious that the closest node to s is a, at a distance of 2, so for step one we
take s1 � a, S1 � fs; ag and ‘s � 0, ‘a � 2.

To begin step two, we must consider all arcs from nodes in S1 � fs; ag to
nodes outside it:

T1 � f�s; b�; �s; c�; �a; b�; �a;d�g:

Draft of August 26, 2005 B–111

We seek the minimum of ‘i � cij over all arcs �i; j� 2 T1:

�s; b� : ‘s � csb � 0� 5 � 5
�s; c� : ‘s � csc � 0� 4 � 4
�a; b� : ‘a � cab � 2� 2 � 4
�a;d� : ‘a � cad � 2� 7 � 9

The minimum is achieved by both �s; c� and �a; b�, from which it follows that
both b and c are second-closest. Thus we can combine steps two and three by
setting s2 � b, s3 � c, with ‘b � ‘c � 4 and S3 � fs; a; b; cg. The shortest path
to b is given by the shortest path to a together with �a; b�, or s ab; the shortest
path to c is just s c.

Having combined steps two and three, we begin step four by considering all
arcs from nodes in S3 � fs; a; b; cg to nodes outside it:

T3 � f�a;d�; �b;d�; �b; e�; �c; e�g:

We seek the minimum of ‘i � cij over all arcs �i; j� 2 T3:

�a;d� : ‘a � cad � 2� 7 � 9
�b;d� : ‘b � cbd � 4� 4 � 8
�b; e� : ‘b � cbe � 4� 3 � 7
�c; e� : ‘c � cce � 4� 4 � 8

The minimum is achieved by �c; e�, so e is the fourth-closest node. We set s4 � e,
with ‘e � 7 and S4 � fs; a; b; c; eg. The shortest path to e is given by the shortest
path to b together with �b; e�, or s a b e.

Step five considers all arcs from nodes in S4 � fs; a; b; c; eg to nodes outside
it:

T4 � f�a;d�; �b;d�; �e; d�; �e; t�g:

We seek the minimum of ‘i � cij over all arcs �i; j� 2 T4:

�a;d� : ‘a � cad � 2� 7 �9
�b;d� : ‘b � cbd � 4� 4 �8
�e; d� : ‘e � ced � 7� 1 �8
�e; t� : ‘e � cet � 7� 7 � 14

The minimum is achieved by both �b;d� and �e; d�, so d is the fifth-closest
node. We set s5 � d, with ‘d � 8 and S5 � fs; a; b; c; d; eg. There is a tie for
the shortest path to d: either the shortest path to b together with �b;d�, giving
s a b d; or the shortest path to e together with �e; d�, giving s a b e d.

At the final step, only the shortest path to t remains to be determined. We
consider all arcs from the other nodes (which are all in S5 now) to t, the one
node outside S5:

T5 � f�d; t�; �e; t�g:

We look at the minimum of ‘i � cij over all arcs �i; j� 2 T5:

B–112 Optimization Methods — x13.3

�d; t� : ‘d � cdt � 8� 5 � 13
�e; t� : ‘e � cet � 7� 7 � 14

The minimum is achieved by �d; t�. The shortest path to t, of length 13, consists
of the shortest path to d together with �d; t�. Since there are two shortest paths
to d, the solution is given by either s a b d t or s a b e d t.

For this small example, Tk can be determined by observation at each step.
Computer implementations can do this implicitly, in a way that keeps the amount
of work proportional to only jN j2.

The idea of this algorithm, in which a series of optimal solutions is built
up until the desired solution is found, is known as dynamic programming.
A variety of other problems in deterministic and stochastic modeling can be
handled by the same kind of approach.

Draft of August 26, 2005 B–113

14. The Network Simplex Method

You have seen how a variety of situations can be modeled as network flow
linear programs. As you would expect, network linear programs can be solved
readily by application of the simplex method. In fact, that the simplex method
can be streamlined in several significant ways when it is applied to a prob-
lem that is known to have a network structure. The resulting network simplex
method is so different that it is commonly studied as a separate algorithm.

We will use an example to show what an iteration of the network simplex
method is like. The network for the example is as follows:

The unit cost of flow is indicated next to each arc. Material is available at nodes
1, 2 and 3, in the amounts shown at the left, and is required at nodes 6, 7 and 8
in the amounts shown at the right; nodes 4 and 5 are transshipment points.

The minimum cost flow problem for this network can be represented by the
following linear program:

Minimize 12x12�12x14�10x24�9x25�13x32�7x35�4x45�8x46�6x47�3x54�9x57�13x58�7x67�3x87

Subject to �x12� x14 � s1 � 100
�x12 � x24� x25� x32 � s2 � 80

� x32� x35 � s3� 130

� x14� x24 � x45� x46� x47� x54 � 0
� x25 � x35� x45 � x54� x57� x58 � 0

� x46 � x67 ��200
� x47 � x57 � x67� x87 � �60

� x58 � x87 � �40

x12; x14; x24; x25; x32; x35; x45; x46; x47; x54; x57; x58; x67; x87; s1; s2; s3 � 0

The first three constraints say that the net flows out of source nodes 1, 2 and 3
must be � the amounts available; slack variables s1, s2 and s3 have been added
to produce equalities. The next two constraints insure that flow in equals flow
out at nodes 4 and 5. Finally, the last three constraints (when multiplied through
by �1) say that net flows into sink nodes 6, 7 and 8 must equal the amounts
required.

B–114 Optimization Methods — x14.0

To illustrate one iteration, we consider the situation in which the simplex
method has reached the basic solution x̄B � �x̄14; x̄24; x̄32; x̄35; x̄46; x̄57; x̄58; s̄3�
� �100;100;20;100;200;60;40;10�: The positive flows along the arcs in this
solution have the following appearance:

(An extra arc has been drawn from node 3 to an imaginary “slack” node, to rep-
resent the 10 units that are unused.) You can see that the arcs corresponding to
the basic variables form a spanning tree in the network, as defined in Section 1
above. In fact, every basis for the linear program corresponds to some spanning
tree in the network.

To begin the simplex method, we must solve the linear system �B � cB .
Extracting just the coefficients of the basic variables from the linear program,
we have

B �

2
6666666666664

1 0 0 0 0 0 0 0
0 1 �1 0 0 0 0 0
0 0 1 1 0 0 0 1
�1 �1 0 0 1 0 0 0

0 0 0 �1 0 1 1 0
0 0 0 0 �1 0 0 0
0 0 0 0 0 �1 0 0
0 0 0 0 0 0 �1 0

3
7777777777775

and cB � �12;10;13;7;8;9;13;0�. Each column of B corresponding to a basic
variable xij has only two nonzero elements, a �1 in row i and a �1 in row j;
each column of B corresponding to a basic variable si has only a 1 in row i. The
corresponding components in cB are cij for a basic xij , and zero for a basic si
(since slack variables have a coefficient of zero in the objective).

The equations �B � cB thus reduce to a system that has a particularly simple
structure. In the case of our example, these equations are

Draft of August 26, 2005 B–115

�1 ��4 � 12
�2 ��4 � 10
�3 ��2 � 13
�3 ��5 � 7
�4 ��6 � 8
�5 ��7 � 9
�5 ��8 � 13

�3 � 0

and a solution can be found immediately by substitution:

�3 � 0 and �3 ��5 � 7) �5 � �7
�5 � �7 and �5 ��8 � 13) �8 � �20
�5 � �7 and �5 ��7 � 9) �7 � �16
�3 � 0 and �3 ��2 � 13) �2 � �13
�2 � �13 and �2 ��4 � 10) �4 � �23
�4 � �23 and �4 ��6 � 8) �6 � �31
�4 � �23 and �1 ��4 � 12) �1 � �11

Thus we have � � ��1; �2; �3; �4; �5; �6; �7; �8� � ��11;�13;0;�23;�7;�31;�16;
�20�: If you imagine “walking around the tree” starting from below node 3 and
proceeding to the right, you will see that you come to the nodes in the order 3,
5, 8, 7, 2, 4, 6, 1. This is just the same as the order in which the � values were
found by substitution above; or, looking at matters from the opposite perspec-
tive, the substitution order for computing the � values can be found by just
walking around the tree.

Next we have to compute the reduced costs. Again, we take advantage of the
simple structure of the constraints: the vector of coefficients aij for a nonbasic
xij has only two nonzeros, a �1 as the ith component and a �1 as the jth
component; the vector of coefficient ai for a nonbasic si has only one nonzero,
a 1 as the ith component. Thus the formulas for the reduced costs simplify to

d12 � c12 ��1 ��2 � 12� ��11�� ��13� � 10
d25 � c25 ��2 ��5 � 9� ��13�� ��7� � 15
d45 � c45 ��4 ��5 � 4� ��23�� ��7� � 20
d54 � c54 ��5 ��4 � 3� ��7�� ��23� � �13
d47 � c47 ��4 ��7 � 6� ��23�� ��16� � 13
d67 � c67 ��6 ��7 � 7� ��31�� ��16� � 22
d87 � c87 ��8 ��7 � 3� ��20�� ��16� � 7

d1 � 0��1 � ���11� � 11
d2 � 0��2 � ���13� � 13

Only d54 < 0, so only x54 is eligible to enter the basis at this iteration.
To determine the leaving variable, we could proceed to solve a linear system

like By54 � a54, and then to carry out a minimum ratio test. However, it is
much easier to do the same thing by just looking at the network. When the
entering variable x54 is increased from zero, the arc (5,4) is added to the basic
tree, creating a unique circuit consisting of x54, x24, x32 and x35. To maintain

B–116 Optimization Methods — x14.0

feasibility of all flows when flow is added to (5,4), it suffices to adjust the flows
along the resulting circuit as shown in this diagram:

Examining the circuit, we see that (3,5) is oriented in the same direction as the
entering arc (5,4); as a result, when x54 increases from 0 to �, x35 increases
from 100 to 100 � �. On the other hand, since (2,4) and (3,2) are oriented in
the opposite direction from (5,4), x24 decreases from 100 to 100 � � and x32

decreases from 20 to 20� �.
How much can we increase the flow � on (5,4)? As in the general simplex

method, we look to see what flows might fall to zero. The flow on (3,5) only
increases; the flow on (2,4) falls to zero when � reaches 100, and the flow on
(3,2) falls to zero when � reaches 20. Thus we can increase x54 up to 20, at
which point x32 becomes zero and drops out of the basis. Equivalently, the arc
(3,2) drops out of the circuit, producing a new basis tree:

You can check that this new flow is less costly by exactly ��d54 � 260.
Every iteration of the network simplex method is just as simple as the one

in our example. In general, the equations �B � cB reduce to

�i ��j � cij for each basic xij
�i � 0 for each basic si

Draft of August 26, 2005 B–117

It can be proved that, because the basis corresponds to a tree, these equations
can always be solved by simple substitution. Moreover, the order of substitution
can always be found by just “walking around the tree” as in the example. (Effi-
cient implementations further reduce the cost of determining � by updating it
as they walk around the tree, rather than computing it anew at each iteration.)

Once � is known, the general formula for the reduced costs is also very
simple:

dij � cij ��i ��j for each nonbasic xij
di � ��i for each nonbasic si

There is a reduced cost for every nonbasic arc, whereas the rest of an iteration
works mainly with basic arcs, which correspond in number to the nodes. Large
networks commonly have many more arcs than nodes, as a result of which the
reduced cost computation becomes the dominant cost of an iteration. To keep
this cost low, only a limited subset of reduced costs is computed at most iter-
ations, and the entering variable is chosen to correspond to the most negative
reduced cost in the subset.

The rest of the work of an iteration consists of finding the circuit created
in the tree by the entering arc, then tracing around the circuit to determine
which arc should leave. The leaving arc is always the one that has minimum
flow among all those in the circuit that are oriented opposite to the direction of
the entering arc. The new flow along the entering arc is always equal to the old
flow on the leaving arc (which falls to zero); each arc on the circuit has its flow
either increased by this same amount (if it is oriented in the same direction as
the entering arc) or decreased by this amount (if it is oriented oppositely). The
new basis is always a new tree that gives a new feasible flow.

When the network simplex steps are to be carried out by a computer, it is
not so obvious how the walk around the tree can be carried out, or how the
circuit induced by the entering arc can be found. A few concise and clever
data structures are used to represent the basis tree in a way that allows these
operations to be efficient. The data structures can themselves be efficiently
updated as the tree changes from iteration to iteration.

B–118 Optimization Methods — x14.0

Draft of August 26, 2005 B–119

15. “Hard” Network Problems

Having looked at some ways in which classic network problems can be solved,
we now turn to some situations in which solutions are very difficult to find. We
first show how even an easy problem like minimum spanning tree can be chal-
lenging to solve as a linear program. Then we introduce a surprising class of
problems that seem to resist solution by any means.

15.1 Intractable linear programs

Interest in network modeling increased greatly beginning about 1950, when
computers started to become available. At first, it was hoped that some kind of
linear programming formulation or technique could be used to efficiently solve
any kind of network problem. Then although there might be some problems
(like maximum flow or shortest path) that could be solved even faster by spe-
cialized algorithms, at least the simplex algorithm could be relied upon in every
case.

It quickly became apparent, however, that even certain very easy network
problems cannot be solved efficiently as linear programs. Consider the mini-
mum spanning tree problem, which you saw can be solved by a simple greedy
algorithm. To model this problem as a linear program, we can aim for a solution
in which

xij �
(

1 if arc �i; j� 2A is in the spanning tree
0 if arc �i; j� 2A is not in the spanning tree

The objective, equal to the cost of all arcs in the tree, could then be taken as the
sum of cijxij over all arcs �i; j� 2 A. The most obvious constraint is that the
number of arcs must equal the number of nodes minus one:

X

�i;j�2A
xij � jN j � 1:

Any tree satisfying this property must be a spanning tree.
Further constraints are needed to ensure that the arcs �i; j� having xij � 1

actually form a tree, however, rather than some other structure:

The difficulty with such solutions is that, although they contain 4 arcs—one less
than the number of nodes—they incorporate a circuit within some subset of the

B–120 Optimization Methods — x15.2

nodes. To deal with this, we observe that if there is a circuit through exactly
some subset C of the nodes, then there are jCj arcs connecting the nodes of C,
whereas in a spanning tree there could be at most jCj � 1 arcs connecting the
nodes of C. Thus we can rule out the undesirable circuit by requiring that less
than jCj arcs be used among all those that connect nodes from C. To say this in
algebra, letAC �A be the subset of connecting arcs:

AC � f�i; j� 2A : i 2 C and j 2 Cg:

Then what we want to require is that
X

�i;j�2AC
xij � jCj � 1

for every subset C �N .
Putting all this together, it would seem that a linear program for the mini-

mum spanning tree problem might be as follows:

Minimize
P
�i;j�2A cijxij

Subject to
P
�i;j�2A xij � jN j � 1P
�i;j�2AC xij � jCj � 1; for all C �N

0 � xij � 1; for all �i; j� 2A
In fact, it can be shown that these constraints are sufficient. In principle, you
can solve the minimum spanning tree problem by solving this linear program.

There is a catch, however. How many subsets C � N are there? For a
network of jN j nodes, there are at most 1

2 jN j�jN j�1� arcs (in the case where
every pair of nodes is connected) but there are 2jN j subsets C of the nodes.
For jN j � 100, the number of arcs is at most 4950, which is manageable for
running the greedy algorithm of Section 2. However, the number of subsets C
is 2100 � 1:27 � 1030, so that it makes no sense to even think about solving the
linear program.

We can save some constraints by considering only subsets of 2 or more
nodes for which AC is connected, in the sense that there is a path between any
two of its nodes. Unless there are very few arcs, however, the number of con-
straints in the linear program will still be impossibly large for even moderate-
sized networks.

There are other linear programming formulations of the minimum spanning
tree problem that avoid an exponential blowup in the number of variables or
constraints. It is far from obvious how to construct these formulations, how-
ever; and even if one is given to you, it is hard to see, at first, that its optimal
solution is guaranteed to be a minimum spanning tree.

15.2 Intractable network problems

Even if linear programming will not solve every network problem, it is still
possible to believe that every problem can be solved by some efficient algorithm—
if only someone is clever enough to find it. There is surprisingly strong evidence,
however, that many problems admit no generally efficient method of solution.

Draft of August 26, 2005 B–121

What should be considered an efficient algorithm? The most widely used cri-
terion was initially suggested in a 1965 paper (entitled “Paths, Trees and Flow-
ers”) by Jack Edmunds:

The amount of work required by a “good” algorithm is bounded by a
polynomial function of the problem size.

For example, an algorithm that requires at most jN j or 12jN j2 or even jN j4jAj
operations is considered a relatively efficient, polynomial algorithm. On the
other hand, a method that requires even 1

1002jN j steps in some cases is regarded
as an inefficient, exponential algorithm.

As jN j and jAj grow larger, any exponential function of them grows much
faster than any polynomial function. The following table2 illustrates the trend;
for n � 10; : : : ;60, it compares the time needed to execute a polynomial number
of operations (n, n2, n3 or n5) and an exponential number of operations (2n or
3n) on the assumption that one operation takes a microsecond:

The sudden rapid growth of the exponential functions is evident. In more gen-
eral terms, n5 increases by a factor of 32 when n is doubled; but 2n increases
by the same factor when n merely increases by 5.

To see the same phenomenon another way, imagine that you had an algo-
rithm that could solve some 1000-node network problem in one hour. If it were
an jN j5 algorithm, the computer would need 32 hours to solve a 2000-node
version of the problem. But if it were a 2jN j algorithm, the computer would
need 32 hours just to solve a 1005-node version — and 210 � 1024 hours to

2M.R. Garey and D.S. Johnson, Computers and Intractability, p. 7.

B–122 Optimization Methods — x15.2

solve a 1010-node version. (It would need 21000 � 1:2� 10295 centuries to solve
a 2000-node problem!)

There are many network problems (and others, too) for which polynomially
bounded algorithms are known to exist. The “easy” problems in Section 2 are
examples.

More generally, what problems are candidates for having polynomial algo-
rithms? At least, they must have the property that, given a solution, you can
check the objective value with only a polynomially bounded amount of work.
Problems that satisfy this requirement are said to be nondeterministic polyno-
mial, or NP. (Actually the definition of NP is not quite so simple, but the fine
points need not concern us here.)

The subject of NP problems was introduced in a 1971 paper by Stephen
Cook. Most importantly, he showed that there exists an NP-complete problem
that is at least as hard as all other NP problems. More precisely, any other NP
problem can be transformed to an equivalent problem of this one particular
type, with only a polynomially bounded amount of work; so if you can solve
problems of this one type, you can solve all NP problems with comparable effort.

Cook’s original NP-complete problem was not especially relevant to opera-
tions research. Soon thereafter, however, Richard Karp and others were able to
show that a huge number of more familiar and natural problems also fall into
the NP-complete class. The traveling salesman problem described in Section 1
is NP-complete. The quite similar postman problem has an easy polynomial al-
gorithm, if all arcs are directed or all are undirected; but it is NP-complete for
networks that have some directed and some undirected arcs. This is a common
pattern; small changes in a problem can make all the difference to whether it is
NP-complete.

Here is a small sampling of other NP-complete network problems:

� Finding a spanning tree that minimizes the maximum distance between
any two nodes, via the unique path through the tree.

� Finding a maximum-capacity cut through a network.

� Finding a longest Hamiltonian circuit or longest path; finding a Hamil-
tonian circuit whose longest arc is as short as possible.

� Finding a maximum flow that uses only certain specified paths.

� Finding the best integer solution to a multicommodity network flow linear
program.

NP-complete problems also arise in other kinds of optimization, and in numer-
ous other fields of mathematics and computer science.

Are there polynomially bounded algorithms for NP-complete problems? Prob-
ably not. Practical experience with various NP-complete problems suggests that
they really are very hard to solve. Moreover, mathematicians have found rea-
sons to suspect that an exponentially growing amount of work will be required
by any algorithm that solves an NP-complete problem—although no proof of
this fact has been devised as yet.

Draft of August 26, 2005 B–123

If all algorithms for NP-complete problems are “exponential”, does this mean
that they are impossible to solve? Not necessarily. First of all, for an algorithm
to be exponential, it need only take an exponentially growing number of opera-
tions in the worst case. For example, an algorithm is considered exponential if,
for every value of m, there exists at least one network of m nodes that takes
2m iterations to solve. The same algorithm might, however, require only an av-
erage of 2m3 iterations to solve the networks that you are really interested in.
Traveling salesman problems in hundreds of nodes have been efficiently solved,
for instance, through a combination of ingenious techniques that seem to work
well for a range of networks that arise in applications.

Furthermore, it is not always necessary to find an optimal solution to an
NP-complete problem. Often a “close enough” solution will suffice. For some
problems it is possible to devise efficient heuristic algorithms that come close to
the optimum with acceptable consistency. In the case of the traveling salesman
problem, for example, one obvious heuristic is to first pick a starting city, and
then keep traveling to the closest unvisited city; when finally all cities have been
visited, you return to the start. This particular idea often does not work too
well, but more elaborate heuristics have been observed to do much better.

What about the problem of linear programming? There exist specially con-
structed linear programs in m constraints that can require 2m simplex iter-
ations when the entering variables are picked in seemingly logical ways, but
typical linear programs require far fewer iterations. Thus the simplex algorithm
can be viewed as an example of a worthwhile exponential algorithm. The ex-
istence of a polynomial algorithm for linear programming turns out to be a
difficult question; it was resolved favorably only after the simplex method had
been studied for three decades.

Almost another decade went by before algorithms that were both polynomial
in theory and efficient in practice became widely available. These are the ones
that were developed in Part III of these notes. They do not step from one basic
solution to another, and are in most other respects unlike the simplex algorithm;
they can be superior to the simplex algorithm, particularly for very large or
degenerate problems.

